Yiyao He , Dawei He , Song Ren , Lin Fan , Lin Wang , Jiang Sun
{"title":"3D-printed microneedles loaded with madecassoside for periodontal soft tissue regeneration","authors":"Yiyao He , Dawei He , Song Ren , Lin Fan , Lin Wang , Jiang Sun","doi":"10.1016/j.ijpharm.2025.125569","DOIUrl":null,"url":null,"abstract":"<div><div>Gingival recession is a common clinical concern. While surgical intervention remains the conventional approach for periodontal soft tissue regeneration, it is often associated with trauma. Recent advancements emphasize minimally invasive and effective alternatives. This study developed a hydrogel microneedle (MN) patch loaded with madecassoside using 3D printing technology to promote periodontal soft tissue regeneration. The PEGDA hydrogel-based MN patch exhibited excellent mechanical properties and biocompatibility, enabling effective skin penetration. <em>In vitro</em> studies demonstrated that madecassoside at specific concentrations enhanced gingival fibroblast proliferation and type I collagen expression. Animal experiments further confirmed that microneedles containing madecassoside effectively promoted periodontal soft tissue regeneration in rabbits. These findings demonstrate the potential of 3D-printed hydrogel microneedles as a promising approach for periodontal soft tissue regeneration, supporting both tissue repair and collagen synthesis.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"676 ","pages":"Article 125569"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325004065","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Gingival recession is a common clinical concern. While surgical intervention remains the conventional approach for periodontal soft tissue regeneration, it is often associated with trauma. Recent advancements emphasize minimally invasive and effective alternatives. This study developed a hydrogel microneedle (MN) patch loaded with madecassoside using 3D printing technology to promote periodontal soft tissue regeneration. The PEGDA hydrogel-based MN patch exhibited excellent mechanical properties and biocompatibility, enabling effective skin penetration. In vitro studies demonstrated that madecassoside at specific concentrations enhanced gingival fibroblast proliferation and type I collagen expression. Animal experiments further confirmed that microneedles containing madecassoside effectively promoted periodontal soft tissue regeneration in rabbits. These findings demonstrate the potential of 3D-printed hydrogel microneedles as a promising approach for periodontal soft tissue regeneration, supporting both tissue repair and collagen synthesis.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.