Zhenjuan Cao , Wenzhi Mai , Lianfang Gan , Ling Huang
{"title":"A metabolomics and proteomics-based study on the metabolic effects of arecoline on the liver","authors":"Zhenjuan Cao , Wenzhi Mai , Lianfang Gan , Ling Huang","doi":"10.1016/j.toxicon.2025.108338","DOIUrl":null,"url":null,"abstract":"<div><div>Arecoline is one of the primary constituents of the areca nut. Its pharmacological effects include analgesia, anti-inflammation, and anti-allergy. Current researches on the toxicity of arecoline mainly focuse on oral carcinogenesis and immunotoxicity, so there are relatively little systematic study on its hepatotoxicity and underlying mechanisms. Therefore, this study aims to explore the mechanisms of hepatotoxicity induced by different doses of arecoline in mice by integrating metabolomics and proteomics. In our pathological results, we found that the medium and high dose groups of arecoline can cause fatty degeneration in the livers of mice. Additionally, the different doses of arecoline increased the levels of ALT and AST in the serum of mice. Proteomics research identified that exposure to different doses of arecoline primarily affected the PPARs signaling pathway, thereby influencing fatty acid metabolism, amino acid metabolism, and arachidonic acid metabolism pathways. Metabolomics research identified differential metabolites in each group after arecoline exposure. We observed that with increasing doses of arecoline, the metabolites of lipids and lipid-like molecules in mice gradually increased. The results suggested arecoline may induce fatty degeneration in the liver of mice through the PPARα/Acox-1 mediated pathways of oxidative stress, inflammatory response, energy, and lipid metabolism.</div></div>","PeriodicalId":23289,"journal":{"name":"Toxicon","volume":"260 ","pages":"Article 108338"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041010125001126","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Arecoline is one of the primary constituents of the areca nut. Its pharmacological effects include analgesia, anti-inflammation, and anti-allergy. Current researches on the toxicity of arecoline mainly focuse on oral carcinogenesis and immunotoxicity, so there are relatively little systematic study on its hepatotoxicity and underlying mechanisms. Therefore, this study aims to explore the mechanisms of hepatotoxicity induced by different doses of arecoline in mice by integrating metabolomics and proteomics. In our pathological results, we found that the medium and high dose groups of arecoline can cause fatty degeneration in the livers of mice. Additionally, the different doses of arecoline increased the levels of ALT and AST in the serum of mice. Proteomics research identified that exposure to different doses of arecoline primarily affected the PPARs signaling pathway, thereby influencing fatty acid metabolism, amino acid metabolism, and arachidonic acid metabolism pathways. Metabolomics research identified differential metabolites in each group after arecoline exposure. We observed that with increasing doses of arecoline, the metabolites of lipids and lipid-like molecules in mice gradually increased. The results suggested arecoline may induce fatty degeneration in the liver of mice through the PPARα/Acox-1 mediated pathways of oxidative stress, inflammatory response, energy, and lipid metabolism.
期刊介绍:
Toxicon has an open access mirror Toxicon: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. An introductory offer Toxicon: X - full waiver of the Open Access fee.
Toxicon''s "aims and scope" are to publish:
-articles containing the results of original research on problems related to toxins derived from animals, plants and microorganisms
-papers on novel findings related to the chemical, pharmacological, toxicological, and immunological properties of natural toxins
-molecular biological studies of toxins and other genes from poisonous and venomous organisms that advance understanding of the role or function of toxins
-clinical observations on poisoning and envenoming where a new therapeutic principle has been proposed or a decidedly superior clinical result has been obtained.
-material on the use of toxins as tools in studying biological processes and material on subjects related to venom and antivenom problems.
-articles on the translational application of toxins, for example as drugs and insecticides
-epidemiological studies on envenoming or poisoning, so long as they highlight a previously unrecognised medical problem or provide insight into the prevention or medical treatment of envenoming or poisoning. Retrospective surveys of hospital records, especially those lacking species identification, will not be considered for publication. Properly designed prospective community-based surveys are strongly encouraged.
-articles describing well-known activities of venoms, such as antibacterial, anticancer, and analgesic activities of arachnid venoms, without any attempt to define the mechanism of action or purify the active component, will not be considered for publication in Toxicon.
-review articles on problems related to toxinology.
To encourage the exchange of ideas, sections of the journal may be devoted to Short Communications, Letters to the Editor and activities of the affiliated societies.