Mridu Malik , Stecia A. Steele , Deepshikha Mitra , Christopher J. Long , James J. Hickman
{"title":"Trans-epithelial/endothelial electrical resistance (TEER): Current state of integrated TEER measurements in organ-on-a-chip devices","authors":"Mridu Malik , Stecia A. Steele , Deepshikha Mitra , Christopher J. Long , James J. Hickman","doi":"10.1016/j.cobme.2025.100588","DOIUrl":null,"url":null,"abstract":"<div><div>Trans-epithelial/endothelial electrical resistance (TEER) is a non-invasive and quick method of assessing the integrity of barrier tissues. Traditional TEER measurement methods such as chopstick electrode-based and chamber-based measurements work well with static, Transwell-based models; however, the same methods do not directly apply to human-on-a-chip or organ-on-a-chip (OOC) platforms. With the wide variety of organ-on-a-chip devices, innovative designs to accurately measure TEER, without disturbing cells, are customized for various devices. Wire electrode integration, integrating a two-probe or four-probe technique, flexible printed circuit boards or multi-electrode glass substrate-based methods are some of the TEER measurement setups being utilized in conjunction with OOC systems. The variability in measurement setups associated with OOCs make standardization challenging; however, the field is working towards establishing guidelines on acceptable TEER values for different OOC constructs.</div></div>","PeriodicalId":36748,"journal":{"name":"Current Opinion in Biomedical Engineering","volume":"34 ","pages":"Article 100588"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468451125000133","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Trans-epithelial/endothelial electrical resistance (TEER) is a non-invasive and quick method of assessing the integrity of barrier tissues. Traditional TEER measurement methods such as chopstick electrode-based and chamber-based measurements work well with static, Transwell-based models; however, the same methods do not directly apply to human-on-a-chip or organ-on-a-chip (OOC) platforms. With the wide variety of organ-on-a-chip devices, innovative designs to accurately measure TEER, without disturbing cells, are customized for various devices. Wire electrode integration, integrating a two-probe or four-probe technique, flexible printed circuit boards or multi-electrode glass substrate-based methods are some of the TEER measurement setups being utilized in conjunction with OOC systems. The variability in measurement setups associated with OOCs make standardization challenging; however, the field is working towards establishing guidelines on acceptable TEER values for different OOC constructs.