A robust study via semi-analytical approach for fractional telegraph equation

Q1 Mathematics
Mamta Kapoor
{"title":"A robust study via semi-analytical approach for fractional telegraph equation","authors":"Mamta Kapoor","doi":"10.1016/j.padiff.2025.101162","DOIUrl":null,"url":null,"abstract":"<div><div>The present study uses iterative Shehu Transform Adomian Decomposition Method to tackle fractional Telegraph equation in <span><math><mrow><mn>1</mn><mi>D</mi></mrow></math></span>, <span><math><mrow><mn>2</mn><mi>D</mi></mrow></math></span>, and <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span>, respectively. These equations are particularly notable in field of material science and a few other related fields. A graphical compatibility of approx. and exact results is used to test the efficacy and validity of proposed technique. <span><math><mrow><mn>2</mn><mi>D</mi></mrow></math></span> and <span><math><mrow><mn>3</mn><mi>D</mi></mrow></math></span> graphs are provided to show a compatible technique of approximate-exact findings. Without any linearization or discretization, iterative Shehu ADM methodology offers a reliable and efficient way to provide approximations and accurate solutions that are error-free. The theoretical and numerical convergence aspects are also validated in this study. It is noticed that on increasing number of grid points, the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> error norm got reduced which is a valid claim for numerical convergence.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101162"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125000890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The present study uses iterative Shehu Transform Adomian Decomposition Method to tackle fractional Telegraph equation in 1D, 2D, and 3D, respectively. These equations are particularly notable in field of material science and a few other related fields. A graphical compatibility of approx. and exact results is used to test the efficacy and validity of proposed technique. 2D and 3D graphs are provided to show a compatible technique of approximate-exact findings. Without any linearization or discretization, iterative Shehu ADM methodology offers a reliable and efficient way to provide approximations and accurate solutions that are error-free. The theoretical and numerical convergence aspects are also validated in this study. It is noticed that on increasing number of grid points, the L error norm got reduced which is a valid claim for numerical convergence.
分数阶电报方程半解析方法的鲁棒性研究
本研究采用迭代Shehu变换Adomian分解方法分别处理一维、二维和三维的分数阶电报方程。这些方程在材料科学和其他一些相关领域尤其引人注目。一个图形的兼容性大约。并用精确的结果验证了所提方法的有效性和有效性。提供了二维和三维图形,以显示近似精确结果的兼容技术。迭代Shehu ADM方法不需要任何线性化或离散化,提供了一种可靠、有效的方法来提供近似和精确的无误差解。理论和数值收敛方面也在本研究中得到验证。注意到随着网格点个数的增加,L∞误差范数减小,这是数值收敛的一个有效证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信