Classical solutions to the thin-film equation with general mobility in the perfect-wetting regime

IF 1.7 2区 数学 Q1 MATHEMATICS
Manuel V. Gnann, Anouk C. Wisse
{"title":"Classical solutions to the thin-film equation with general mobility in the perfect-wetting regime","authors":"Manuel V. Gnann,&nbsp;Anouk C. Wisse","doi":"10.1016/j.jfa.2025.110941","DOIUrl":null,"url":null,"abstract":"<div><div>We prove well-posedness, partial regularity, and stability of the thin-film equation <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>+</mo><msub><mrow><mo>(</mo><mi>m</mi><mo>(</mo><mi>h</mi><mo>)</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>z</mi><mi>z</mi><mi>z</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>z</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> with general mobility <span><math><mi>m</mi><mo>(</mo><mi>h</mi><mo>)</mo><mo>=</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and mobility exponent <span><math><mi>n</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>)</mo><mo>∪</mo><mo>(</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mn>3</mn><mo>)</mo></math></span> in the regime of perfect wetting (zero contact angle). After a suitable coordinate transformation to fix the free boundary (the contact line where liquid, air, and solid coalesce), the thin-film equation is rewritten as an abstract Cauchy problem and we obtain maximal <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mi>p</mi></mrow></msubsup></math></span>-regularity for the linearized evolution. Partial regularity close to the free boundary is obtained by studying the elliptic regularity of the spatial part of the linearization. This yields solutions that are non-smooth in the distance to the free boundary, in line with previous findings for source-type self-similar solutions. In a scaling-wise quasi-minimal norm for the initial data, we obtain a well-posedness and asymptotic stability result for perturbations of traveling waves. The novelty of this work lies in the usage of <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates in time, where <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mo>∞</mo></math></span>, while the existing literature mostly deals with <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span> at least for nonlinear mobilities. This turns out to be essential to obtain for the first time a well-posedness result in the perfect-wetting regime for all physical nonlinear slip conditions except for a strongly degenerate case at <span><math><mi>n</mi><mo>=</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> and the well-understood Greenspan-slip case <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>. Furthermore, compared to <span><span>[36]</span></span> by Giacomelli, the first author of this paper, Knüpfer, and Otto, where a PDE approach yields <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span>-estimates, well-posedness, and stability for <span><math><mn>1.8384</mn><mo>≈</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>17</mn></mrow></mfrac><mo>(</mo><mn>15</mn><mo>−</mo><msqrt><mrow><mn>21</mn></mrow></msqrt><mo>)</mo><mo>&lt;</mo><mi>n</mi><mo>&lt;</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>11</mn></mrow></mfrac><mo>(</mo><mn>7</mn><mo>+</mo><msqrt><mrow><mn>5</mn></mrow></msqrt><mo>)</mo><mo>≈</mo><mn>2.5189</mn></math></span>, our functional-analytic approach is shorter while at the same time giving a more general result.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 8","pages":"Article 110941"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625001235","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove well-posedness, partial regularity, and stability of the thin-film equation ht+(m(h)hzzz)z=0 with general mobility m(h)=hn and mobility exponent n(1,32)(32,3) in the regime of perfect wetting (zero contact angle). After a suitable coordinate transformation to fix the free boundary (the contact line where liquid, air, and solid coalesce), the thin-film equation is rewritten as an abstract Cauchy problem and we obtain maximal Ltp-regularity for the linearized evolution. Partial regularity close to the free boundary is obtained by studying the elliptic regularity of the spatial part of the linearization. This yields solutions that are non-smooth in the distance to the free boundary, in line with previous findings for source-type self-similar solutions. In a scaling-wise quasi-minimal norm for the initial data, we obtain a well-posedness and asymptotic stability result for perturbations of traveling waves. The novelty of this work lies in the usage of Lp-estimates in time, where 1<p<, while the existing literature mostly deals with p=2 at least for nonlinear mobilities. This turns out to be essential to obtain for the first time a well-posedness result in the perfect-wetting regime for all physical nonlinear slip conditions except for a strongly degenerate case at n=32 and the well-understood Greenspan-slip case n=1. Furthermore, compared to [36] by Giacomelli, the first author of this paper, Knüpfer, and Otto, where a PDE approach yields Lt2-estimates, well-posedness, and stability for 1.8384317(1521)<n<311(7+5)2.5189, our functional-analytic approach is shorter while at the same time giving a more general result.
完美润湿状态下具有一般迁移率的薄膜方程的经典解
我们证明了薄膜方程ht+(m(h)hzzz)z=0在完全润湿(零接触角)条件下具有一般迁移率m(h)=hn和迁移率指数n∈(1,32)∪(32,3)的适定性、部分正则性和稳定性。通过适当的坐标变换来确定自由边界(液、气、固结合的接触线),将薄膜方程改写为抽象的Cauchy问题,得到线性化演化的最大ltp正则性。通过研究线性化空间部分的椭圆正则性,得到了接近自由边界的部分正则性。这就产生了在到自由边界的距离上不光滑的解,这与先前对源型自相似解的发现一致。在初始数据的标度拟极小范数下,我们得到了行波扰动的适定性和渐近稳定性结果。这项工作的新颖之处在于使用了时间上的lp估计,其中1<;p<∞,而现有文献大多处理p=2至少对于非线性移动。这对于首次获得除n=32的强退化情况和n=1的熟知的格林斯潘-滑移情况外的所有物理非线性滑移条件下的完美润湿状态的适定性结果至关重要。此外,与本文第一作者Giacomelli、kn pfer和Otto的[36]相比,PDE方法在1.8384≈317(15−21)<n<311(7+5)≈2.5189时产生lt2估计、适定性和稳定性,我们的函数解析方法更短,同时给出了更一般的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信