Time-dependent Bivariational Principle: Theoretical Foundation for Real-Time Propagation Methods of Coupled-Cluster Type

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Simen Kvaal*, Håkon Richard Fredheim, Mads Greisen Højlund and Thomas Bondo Pedersen, 
{"title":"Time-dependent Bivariational Principle: Theoretical Foundation for Real-Time Propagation Methods of Coupled-Cluster Type","authors":"Simen Kvaal*,&nbsp;Håkon Richard Fredheim,&nbsp;Mads Greisen Højlund and Thomas Bondo Pedersen,&nbsp;","doi":"10.1021/acs.jpca.4c0741710.1021/acs.jpca.4c07417","DOIUrl":null,"url":null,"abstract":"<p >Real-time propagation methods for chemistry and physics are invariably formulated using variational techniques. The time-dependent bivariational principle (TD-BIVP) is known to be the proper framework for coupled-cluster type methods, and is here studied from a differential geometric point of view. It is demonstrated how two distinct classical Hamilton’s equations of motion arise from considering the real and imaginary parts of the action integral. This in turn leads to two distinct bivariational principles for real bivariational approximation submanifolds. Conservation laws and Poisson brackets are introduced, completing the analogy with classical mechanics. Furthermore, the time-dependent univariational principles (the time-dependent variational principle, the McLachlan principle, and the Dirac–Frenkel principle) are reconstructed using the TD-BIVP and a bivariational submanifold on product form. An overview of established real-time propagation methods is given in the context of our formulation of the TD-BIVP, namely time-dependent traditional coupled-cluster theory, orbital-adaptive coupled-cluster theory, time-dependent orthogonal optimized coupled-cluster theory, Brueckner coupled-cluster theory, and equation-of-motion coupled cluster theory.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 15","pages":"3508–3521 3508–3521"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jpca.4c07417","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c07417","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Real-time propagation methods for chemistry and physics are invariably formulated using variational techniques. The time-dependent bivariational principle (TD-BIVP) is known to be the proper framework for coupled-cluster type methods, and is here studied from a differential geometric point of view. It is demonstrated how two distinct classical Hamilton’s equations of motion arise from considering the real and imaginary parts of the action integral. This in turn leads to two distinct bivariational principles for real bivariational approximation submanifolds. Conservation laws and Poisson brackets are introduced, completing the analogy with classical mechanics. Furthermore, the time-dependent univariational principles (the time-dependent variational principle, the McLachlan principle, and the Dirac–Frenkel principle) are reconstructed using the TD-BIVP and a bivariational submanifold on product form. An overview of established real-time propagation methods is given in the context of our formulation of the TD-BIVP, namely time-dependent traditional coupled-cluster theory, orbital-adaptive coupled-cluster theory, time-dependent orthogonal optimized coupled-cluster theory, Brueckner coupled-cluster theory, and equation-of-motion coupled cluster theory.

时变二分原理:耦合簇型实时传播方法的理论基础
化学和物理的实时传播方法总是使用变分技术。时间相关二分原理(TD-BIVP)被认为是耦合簇型方法的适当框架,本文从微分几何的角度对其进行了研究。通过考虑运动积分的实部和虚部,证明了两个不同的经典汉密尔顿运动方程是如何产生的。这反过来又导致了实二元逼近子流形的两个不同的二元原理。引入了守恒定律和泊松括号,完成了与经典力学的类比。在此基础上,利用TD-BIVP和乘积形式的二分子流形重构了时变单分原理(时变分原理、McLachlan原理和Dirac-Frenkel原理)。本文以TD-BIVP的建立为背景,综述了已有的实时传播方法,即时变传统耦合簇理论、轨道自适应耦合簇理论、时变正交优化耦合簇理论、Brueckner耦合簇理论和运动方程耦合簇理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信