Reliable Quantum-Chemistry Heats of Formation for an Extensive Set of C-, H-, N-, O-, F-, S-, Cl-, Br-Containing Molecules in the NIST Chemistry Webbook
{"title":"Reliable Quantum-Chemistry Heats of Formation for an Extensive Set of C-, H-, N-, O-, F-, S-, Cl-, Br-Containing Molecules in the NIST Chemistry Webbook","authors":"Bun Chan*, ","doi":"10.1021/acs.jpca.5c0047610.1021/acs.jpca.5c00476","DOIUrl":null,"url":null,"abstract":"<p >In the present study, we have computed the heat of formation (HOF) for over 500 C-, H-, N-, O-, F-, S-, Cl-, Br-containing molecules in the NIST Chemistry Webbook with a previously established methodology [from the highest- to lowest-level methods, W1X-2, CCSD(T)-F12b, DSD-PBEP86, and ωB97M-V, with the lower levels calibrated against higher levels for the atomic energies, see: <cite><i>J. Phys. Chem. A</i></cite> <span>2022</span>, <em>126</em>, 4981–4990]. We find a reasonable level of agreement between the computed and NIST values for the present set of species. However, the set of F-containing compounds shows considerably larger discrepancies, which can in part be attributed to dubious experimental values, as we have demonstrated in some cases. With our highest-level computed HOFs, we validated the lower-level methods used in our protocol. Specifically, CCSD(T)-F12b yields chemically accurate (±4.2 kJ mol<sup>–1</sup>) values for all types of molecules, while DSD-PBEP86 and ωB97M-V yield similar levels of accuracy for most systems, with key exceptions being molecules with numerous electron-withdrawing F and NO<sub>2</sub> groups. Our results further support the use of the protocol for the computation of HOFs, particularly for systems with few reliable reference values.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 15","pages":"3578–3586 3578–3586"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.5c00476","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, we have computed the heat of formation (HOF) for over 500 C-, H-, N-, O-, F-, S-, Cl-, Br-containing molecules in the NIST Chemistry Webbook with a previously established methodology [from the highest- to lowest-level methods, W1X-2, CCSD(T)-F12b, DSD-PBEP86, and ωB97M-V, with the lower levels calibrated against higher levels for the atomic energies, see: J. Phys. Chem. A2022, 126, 4981–4990]. We find a reasonable level of agreement between the computed and NIST values for the present set of species. However, the set of F-containing compounds shows considerably larger discrepancies, which can in part be attributed to dubious experimental values, as we have demonstrated in some cases. With our highest-level computed HOFs, we validated the lower-level methods used in our protocol. Specifically, CCSD(T)-F12b yields chemically accurate (±4.2 kJ mol–1) values for all types of molecules, while DSD-PBEP86 and ωB97M-V yield similar levels of accuracy for most systems, with key exceptions being molecules with numerous electron-withdrawing F and NO2 groups. Our results further support the use of the protocol for the computation of HOFs, particularly for systems with few reliable reference values.
期刊介绍:
The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.