Assessment of the Toxicity of Bio-Synthesized Silver Nanoparticles on Oreochromis niloticus (nile tilapia)

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Luiz Gustavo Ribeiro, Edison Barbieri, Ana Olívia de Souza
{"title":"Assessment of the Toxicity of Bio-Synthesized Silver Nanoparticles on Oreochromis niloticus (nile tilapia)","authors":"Luiz Gustavo Ribeiro, Edison Barbieri, Ana Olívia de Souza","doi":"10.1039/d4en01125b","DOIUrl":null,"url":null,"abstract":"Silver nanoparticles (AgNPs) have garnered significant attention due to their antimicrobial properties. However, their potential environmental impact remains a concern. This study evaluates the acute toxicity and physiological effects of biogenic AgNPs synthesized using Aspergillus tubingensis (AgNP-AT) on Oreochromis niloticus (Nile tilapia), a widely used bioindicator species. AgNP-AT were characterized using UV-Vis spectrophotometry (SPR peak at 420 nm), dynamic light scattering (DLS; 48±5 nm), and transmission electron microscopy (TEM; 35±10 nm). The 96-hours median lethal concentrations (LC50) for AgNP-AT was determined as 8.8 μM, whereas AgNO3 exhibited a significantly lower LC50 of 0.028 μM, indicating its higher toxicity. Exposure to AgNP-AT at 30, 35, and 40 μM resulted in a significant increase in oxygen consumption (from 0.2 to 0.4 mL O2/g/L/h) without affecting ammonia excretion. Swimming activity was reduced in a concentration-dependent manner, with fish exposed to 40 μM showing the most pronounced impairment. Histopathological analysis revealed a reduction in lamellar length (50% decrease) and an increase in lamellar width (60% increase), demonstrating structural alterations in the gills. These findings show that AgNP-AT, although less toxic than AgNO3, still induces physiological and morphological effects in Nile tilapia. This study provides valuable data for assessing the environmental risks of biogenic AgNPs and contributes to the development of safer nanotechnology applications.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"90 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01125b","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silver nanoparticles (AgNPs) have garnered significant attention due to their antimicrobial properties. However, their potential environmental impact remains a concern. This study evaluates the acute toxicity and physiological effects of biogenic AgNPs synthesized using Aspergillus tubingensis (AgNP-AT) on Oreochromis niloticus (Nile tilapia), a widely used bioindicator species. AgNP-AT were characterized using UV-Vis spectrophotometry (SPR peak at 420 nm), dynamic light scattering (DLS; 48±5 nm), and transmission electron microscopy (TEM; 35±10 nm). The 96-hours median lethal concentrations (LC50) for AgNP-AT was determined as 8.8 μM, whereas AgNO3 exhibited a significantly lower LC50 of 0.028 μM, indicating its higher toxicity. Exposure to AgNP-AT at 30, 35, and 40 μM resulted in a significant increase in oxygen consumption (from 0.2 to 0.4 mL O2/g/L/h) without affecting ammonia excretion. Swimming activity was reduced in a concentration-dependent manner, with fish exposed to 40 μM showing the most pronounced impairment. Histopathological analysis revealed a reduction in lamellar length (50% decrease) and an increase in lamellar width (60% increase), demonstrating structural alterations in the gills. These findings show that AgNP-AT, although less toxic than AgNO3, still induces physiological and morphological effects in Nile tilapia. This study provides valuable data for assessing the environmental risks of biogenic AgNPs and contributes to the development of safer nanotechnology applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信