Jiahua Zhang , Linjie Ma , Yong Hou , Haoyi Ouyang , Hyunsik Hong , Kanghyeon Kim , Heemin Kang , Zhiqin Chu
{"title":"Nanodiamond-Based Sensing: A revolution for biosensors in capturing elusive bio-signals in living cells","authors":"Jiahua Zhang , Linjie Ma , Yong Hou , Haoyi Ouyang , Hyunsik Hong , Kanghyeon Kim , Heemin Kang , Zhiqin Chu","doi":"10.1016/j.addr.2025.115590","DOIUrl":null,"url":null,"abstract":"<div><div>Cells constantly produce elusive bio-signals, such as cellular forces, free radicals, and molecular interactions, that are important for understanding diseases and treatment effects. However, detecting these signals is challenging because of issues with sensitivity, specificity, and the complexity of biological systems. Owing to their unique properties, nanodiamonds have emerged as a promising platform for detecting such elusive bio-signals, providing enhanced precision and effectiveness in diagnostics and therapies. In this review, we explore the detection of intracellular elusive bio-signals using nitrogen-vacancy (NV) centers in nanodiamonds, presenting case studies on their applications in cell force, free radicals, molecular interactions, and nanoscale thermometry. Moreover, we explore the design and applications of nanodiamonds as nanocarriers in quantum sensors and drug delivery systems.</div></div>","PeriodicalId":7254,"journal":{"name":"Advanced drug delivery reviews","volume":"221 ","pages":"Article 115590"},"PeriodicalIF":15.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced drug delivery reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169409X25000754","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cells constantly produce elusive bio-signals, such as cellular forces, free radicals, and molecular interactions, that are important for understanding diseases and treatment effects. However, detecting these signals is challenging because of issues with sensitivity, specificity, and the complexity of biological systems. Owing to their unique properties, nanodiamonds have emerged as a promising platform for detecting such elusive bio-signals, providing enhanced precision and effectiveness in diagnostics and therapies. In this review, we explore the detection of intracellular elusive bio-signals using nitrogen-vacancy (NV) centers in nanodiamonds, presenting case studies on their applications in cell force, free radicals, molecular interactions, and nanoscale thermometry. Moreover, we explore the design and applications of nanodiamonds as nanocarriers in quantum sensors and drug delivery systems.
期刊介绍:
The aim of the Journal is to provide a forum for the critical analysis of advanced drug and gene delivery systems and their applications in human and veterinary medicine. The Journal has a broad scope, covering the key issues for effective drug and gene delivery, from administration to site-specific delivery.
In general, the Journal publishes review articles in a Theme Issue format. Each Theme Issue provides a comprehensive and critical examination of current and emerging research on the design and development of advanced drug and gene delivery systems and their application to experimental and clinical therapeutics. The goal is to illustrate the pivotal role of a multidisciplinary approach to modern drug delivery, encompassing the application of sound biological and physicochemical principles to the engineering of drug delivery systems to meet the therapeutic need at hand. Importantly the Editorial Team of ADDR asks that the authors effectively window the extensive volume of literature, pick the important contributions and explain their importance, produce a forward looking identification of the challenges facing the field and produce a Conclusions section with expert recommendations to address the issues.