Covalent Design of Ionogels: Bridging with Hydrogels and Covalent Adaptable Networks

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Yukikazu Takeoka, Junjia Zhang, Yian Wang, Yinglu Liu, Jeremy Odent
{"title":"Covalent Design of Ionogels: Bridging with Hydrogels and Covalent Adaptable Networks","authors":"Yukikazu Takeoka, Junjia Zhang, Yian Wang, Yinglu Liu, Jeremy Odent","doi":"10.1039/d5py00217f","DOIUrl":null,"url":null,"abstract":"Ionogels are conductive soft matter with ionic liquids as conductive media, exhibiting significant potential as multifunctional materials. Over the past two decades, ionogels have been developed for applications in sensors, actuators, supercapacitors, lithium-ion batteries, adhesives, antifouling coatings, nanotriboelectric generators, thermoelectric devices, etc. To achieve recyclability that is advantageous for various applications, dissociative supramolecular interactions—e.g. electrostatic interactions, hydrogen bonds and - stacking—have garnered significant attention in the crosslinking design of ionogels. High-strength ionogels utilizing dissociative supramolecular interactions as a crosslinking mechanism have been synthesized. However, due to the inherently low bond energy and high dynamics of dissociative supramolecular crosslinking, issues such as low thermal stability and insufficient solvent resistance arise, limiting the broader applications of ionogels. To address these challenges, the network structure can be precisely designed, and reversible covalent bonds can be introduced as a crosslinking mechanism to mitigate the trade-off between material durability and dynamic behavior. Several studies provide insights into realizing this approach. For instance, hydrogels, which are also classified as soft materials, can enhance both mechanical strength and deformability by incorporating topological network structures based on organic covalent bonds. Similarly, covalent adaptable networks (CANs), a class of dynamic materials, achieve high thermal stability, solvent resistance, and recyclability by utilizing densely reversible covalent bonds. Hence, we chiefly focus on the critical roles of designing the organic polymer network structures and utilizing reversible covalent bonding to enhance key physical properties of ionogels, including mechanical strength, electrical conductivity, and processability. Last but not least, we discuss the current challenges associated with the design and application of ionogels, while also anticipating potential strategies that leverage the superior designs from materials such as hydrogels and CANs to develop innovative ionogels.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"1 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5py00217f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Ionogels are conductive soft matter with ionic liquids as conductive media, exhibiting significant potential as multifunctional materials. Over the past two decades, ionogels have been developed for applications in sensors, actuators, supercapacitors, lithium-ion batteries, adhesives, antifouling coatings, nanotriboelectric generators, thermoelectric devices, etc. To achieve recyclability that is advantageous for various applications, dissociative supramolecular interactions—e.g. electrostatic interactions, hydrogen bonds and - stacking—have garnered significant attention in the crosslinking design of ionogels. High-strength ionogels utilizing dissociative supramolecular interactions as a crosslinking mechanism have been synthesized. However, due to the inherently low bond energy and high dynamics of dissociative supramolecular crosslinking, issues such as low thermal stability and insufficient solvent resistance arise, limiting the broader applications of ionogels. To address these challenges, the network structure can be precisely designed, and reversible covalent bonds can be introduced as a crosslinking mechanism to mitigate the trade-off between material durability and dynamic behavior. Several studies provide insights into realizing this approach. For instance, hydrogels, which are also classified as soft materials, can enhance both mechanical strength and deformability by incorporating topological network structures based on organic covalent bonds. Similarly, covalent adaptable networks (CANs), a class of dynamic materials, achieve high thermal stability, solvent resistance, and recyclability by utilizing densely reversible covalent bonds. Hence, we chiefly focus on the critical roles of designing the organic polymer network structures and utilizing reversible covalent bonding to enhance key physical properties of ionogels, including mechanical strength, electrical conductivity, and processability. Last but not least, we discuss the current challenges associated with the design and application of ionogels, while also anticipating potential strategies that leverage the superior designs from materials such as hydrogels and CANs to develop innovative ionogels.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信