{"title":"Single-Elemental Seamless Metal–Semiconductor Junctions Based on 2D Bi or Sb: Carrier Transport and Ultrafast Dynamics Study","authors":"Zifan Niu, Wenchao Shan, Xinxin Wang, Xiuyun Zhang, Anqi Shi, Ying Zhang, Xianghong Niu","doi":"10.1021/acs.jpclett.5c00706","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) metal–semiconductor (MS) junctions with their atomically thin nature are crucial for nanoelectronics. However, van der Waals (vdW) junctions face interfacial tunneling barriers, and lateral junctions suffer from chemical bonding disorders, both limiting carrier transport. Herein, based on the layer-dependent semiconductor-to-semimetal transition in 2D bismuthene (Bi) and antimonene (Sb), lateral seamless MS junctions with native chemical bonds are constructed to inhibit tunneling barriers and produce high-quality interfaces. These coherent junctions exhibit superior transport properties, yielding a significant current response at moderate bias as continuous covalent bonding removes vdW gaps and defects. In optoelectronic applications, the photogenerated carrier lifetimes in Bi and Sb reach 61.62 and 286.16 ns owing to weak electron–phonon coupling. Furthermore, the transport and optoelectronic properties of these MS junctions exhibit superior environmental resistance, while O<sub>2</sub>-induced trap states in Sb enhance photoconductive gain. This work provides a theoretical foundation for designing high-performance electronic and optoelectronic devices.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"2 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.5c00706","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional (2D) metal–semiconductor (MS) junctions with their atomically thin nature are crucial for nanoelectronics. However, van der Waals (vdW) junctions face interfacial tunneling barriers, and lateral junctions suffer from chemical bonding disorders, both limiting carrier transport. Herein, based on the layer-dependent semiconductor-to-semimetal transition in 2D bismuthene (Bi) and antimonene (Sb), lateral seamless MS junctions with native chemical bonds are constructed to inhibit tunneling barriers and produce high-quality interfaces. These coherent junctions exhibit superior transport properties, yielding a significant current response at moderate bias as continuous covalent bonding removes vdW gaps and defects. In optoelectronic applications, the photogenerated carrier lifetimes in Bi and Sb reach 61.62 and 286.16 ns owing to weak electron–phonon coupling. Furthermore, the transport and optoelectronic properties of these MS junctions exhibit superior environmental resistance, while O2-induced trap states in Sb enhance photoconductive gain. This work provides a theoretical foundation for designing high-performance electronic and optoelectronic devices.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.