Photothermal-Propelled Au-CeO2 Micromotors for Synergistic Photocatalytic-Photothermal Antibacterial Systems

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-04-16 DOI:10.1002/smll.202501465
Fengyan Shi, Mengna Ding, Qin Zhang, Ya Zhao, Liping Zhou, Liulin Luo, Yingchun Miao, Yuning Huo
{"title":"Photothermal-Propelled Au-CeO2 Micromotors for Synergistic Photocatalytic-Photothermal Antibacterial Systems","authors":"Fengyan Shi,&nbsp;Mengna Ding,&nbsp;Qin Zhang,&nbsp;Ya Zhao,&nbsp;Liping Zhou,&nbsp;Liulin Luo,&nbsp;Yingchun Miao,&nbsp;Yuning Huo","doi":"10.1002/smll.202501465","DOIUrl":null,"url":null,"abstract":"<p>Facing the great challenge for efficient utilization of solar light, the design of photothermal-propelled micromotors is significant for converting optical energy into thermal energy to achieve the in situ manipulated motion. Assisted by the photothermal-propelled function, a synergistic photocatalytic-photothermal antibacterial system is successfully constructed in this work, based on the Au-CeO<sub>2</sub> micromotor. The selective growth of CeO<sub>2</sub> nanoparticles on the surface of Au nanorods (NRs) is achieved with the adjustable Au exposure ratio. The strong interaction of CeO<sub>2</sub> with Au NRs realizes the enhanced visible light harvesting and the promoted photo-induced charge separation. Especially, the self-induced thermophoretic force on asymmetric lollipop-like L-Au-CeO<sub>2</sub> with higher Au exposure ratio is more powerful than that on symmetric core-shelled CS-Au-CeO<sub>2</sub> and dumbbell-like D-Au-CeO<sub>2</sub>. As a result, its local temperature gradient is greater and thus realizes the in situ manipulated motion with higher velocity and stronger directionality. It further facilitates the contact with bacteria and promotes the synergistic photocatalytic-photothermal antibacterial performance for the probe bacteria of <i>Escherichia coli</i>. This powerful photothermal-propelled Au-CeO<sub>2</sub> micromotor shows significant potential for the microorganism control in biomedical and environmental applications.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 21","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202501465","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Facing the great challenge for efficient utilization of solar light, the design of photothermal-propelled micromotors is significant for converting optical energy into thermal energy to achieve the in situ manipulated motion. Assisted by the photothermal-propelled function, a synergistic photocatalytic-photothermal antibacterial system is successfully constructed in this work, based on the Au-CeO2 micromotor. The selective growth of CeO2 nanoparticles on the surface of Au nanorods (NRs) is achieved with the adjustable Au exposure ratio. The strong interaction of CeO2 with Au NRs realizes the enhanced visible light harvesting and the promoted photo-induced charge separation. Especially, the self-induced thermophoretic force on asymmetric lollipop-like L-Au-CeO2 with higher Au exposure ratio is more powerful than that on symmetric core-shelled CS-Au-CeO2 and dumbbell-like D-Au-CeO2. As a result, its local temperature gradient is greater and thus realizes the in situ manipulated motion with higher velocity and stronger directionality. It further facilitates the contact with bacteria and promotes the synergistic photocatalytic-photothermal antibacterial performance for the probe bacteria of Escherichia coli. This powerful photothermal-propelled Au-CeO2 micromotor shows significant potential for the microorganism control in biomedical and environmental applications.

Abstract Image

用于协同光催化-光热抗菌系统的光热推进型Au-CeO2微电机
面对高效利用太阳光的巨大挑战,光热推动微电机的设计对于将光能转化为热能以实现原位操纵运动具有重要意义。在光热推动功能的辅助下,本研究成功构建了基于 Au-CeO2 微电机的光催化-光热协同抗菌系统。通过调节金的暴露比例,实现了 CeO2 纳米粒子在金纳米棒(NRs)表面的选择性生长。CeO2 与金纳米棒的强相互作用实现了增强的可见光收集和促进的光诱导电荷分离。特别是,与对称核壳 CS-Au-CeO2 和哑铃状 D-Au-CeO2 相比,金暴露比更高的不对称棒棒糖状 L-Au-CeO2 的自诱导热泳力更强。因此,其局部温度梯度更大,从而实现了速度更快、方向性更强的原位可控运动。它进一步促进了与细菌的接触,提高了对大肠杆菌探针菌的光催化-光热协同抗菌性能。这种强大的光热推动 Au-CeO2 微马达在生物医学和环境应用中控制微生物方面显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信