Maayan Baron, Mohita Tagore, Patrick Wall, Fan Zheng, Dalia Barkley, Itai Yanai, Jing Yang, Maija Kiuru, Richard M. White, Trey Ideker
{"title":"Desmosome mutations impact the tumor microenvironment to promote melanoma proliferation","authors":"Maayan Baron, Mohita Tagore, Patrick Wall, Fan Zheng, Dalia Barkley, Itai Yanai, Jing Yang, Maija Kiuru, Richard M. White, Trey Ideker","doi":"10.1038/s41588-025-02163-9","DOIUrl":null,"url":null,"abstract":"<p>Desmosomes are transmembrane protein complexes that contribute to cell–cell adhesion in epithelia and other tissues. Here, we report the discovery of frequent genetic alterations in the desmosome in human cancers, with the strongest signal seen in cutaneous melanoma, where desmosomes are mutated in more than 70% of cases. In primary but not metastatic melanoma biopsies, the burden of coding mutations in desmosome genes is associated with a strong reduction in desmosome gene expression. Analysis by spatial transcriptomics and protein immunofluorescence suggests that these decreases in expression occur in keratinocytes in the microenvironment rather than in primary melanoma cells. In further support of a microenvironmental origin, we find that desmosome gene knockdown in keratinocytes yields markedly increased proliferation of adjacent melanoma cells in keratinocyte and melanoma cocultures. Similar increases in melanoma proliferation are observed in media preconditioned with desmosome-deficient keratinocytes. Thus, gradual accumulation of desmosome mutations in neighboring cells may prime melanoma cells for neoplastic transformation.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"72 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-025-02163-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Desmosomes are transmembrane protein complexes that contribute to cell–cell adhesion in epithelia and other tissues. Here, we report the discovery of frequent genetic alterations in the desmosome in human cancers, with the strongest signal seen in cutaneous melanoma, where desmosomes are mutated in more than 70% of cases. In primary but not metastatic melanoma biopsies, the burden of coding mutations in desmosome genes is associated with a strong reduction in desmosome gene expression. Analysis by spatial transcriptomics and protein immunofluorescence suggests that these decreases in expression occur in keratinocytes in the microenvironment rather than in primary melanoma cells. In further support of a microenvironmental origin, we find that desmosome gene knockdown in keratinocytes yields markedly increased proliferation of adjacent melanoma cells in keratinocyte and melanoma cocultures. Similar increases in melanoma proliferation are observed in media preconditioned with desmosome-deficient keratinocytes. Thus, gradual accumulation of desmosome mutations in neighboring cells may prime melanoma cells for neoplastic transformation.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution