Time-Resolved In Situ Small-Angle X-ray Scattering to Determine the Kinetics of Formation of Liquid Crystalline Structure in the Core of Polymeric Nanoparticles during and after Turbulent Mixing
Sophia R. Dasaro, Lucas D. Johnson, Malinda Salim, Vincent He, David Amelemah, Ellie Ponsonby-Thomas, Bryce Barber, Wye-Khay Fong, Jonathan Caukwell, Elizabeth Peach, Ben Li, Livia Salvati Manni, Nigel Kirby, Gregory G. Warr, Robert K. Prud’homme, Ben J. Boyd, Kurt Ristroph
{"title":"Time-Resolved In Situ Small-Angle X-ray Scattering to Determine the Kinetics of Formation of Liquid Crystalline Structure in the Core of Polymeric Nanoparticles during and after Turbulent Mixing","authors":"Sophia R. Dasaro, Lucas D. Johnson, Malinda Salim, Vincent He, David Amelemah, Ellie Ponsonby-Thomas, Bryce Barber, Wye-Khay Fong, Jonathan Caukwell, Elizabeth Peach, Ben Li, Livia Salvati Manni, Nigel Kirby, Gregory G. Warr, Robert K. Prud’homme, Ben J. Boyd, Kurt Ristroph","doi":"10.1021/acs.nanolett.5c01095","DOIUrl":null,"url":null,"abstract":"The encapsulation of liquid crystalline phases, formed from biocompatible amphiphiles, into nanoparticles has emerged as a promising delivery strategy for hydrophilic and hydrophobic therapeutics. Strategies to characterize these delivery systems as a function of formulation parameters and aqueous environment post-manufacture are well-documented. A critical gap remains regarding the assembly kinetics and <i>in situ</i> dynamics of these systems using industrially relevant manufacturing techniques. Systematically investigating these characteristics is challenging: computational simulations are time-intensive and costly, while current <i>in situ</i> quantification techniques are limited in scalability and batch size. We here combine synchrotron small-angle X-ray scattering with Flash NanoPrecipitation, a scalable turbulent mixing technology, to capture time-resolved measurements of the formation of liquid crystal phases under nanoconfinement during and after nanoprecipitation. This technique reveals that self-assembly occurs in two steps, with internal liquid crystal self-assembly occurring on longer time scales (seconds to minutes) than initial nanoprecipitation (milliseconds) as a function of formulation parameters.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"74 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c01095","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The encapsulation of liquid crystalline phases, formed from biocompatible amphiphiles, into nanoparticles has emerged as a promising delivery strategy for hydrophilic and hydrophobic therapeutics. Strategies to characterize these delivery systems as a function of formulation parameters and aqueous environment post-manufacture are well-documented. A critical gap remains regarding the assembly kinetics and in situ dynamics of these systems using industrially relevant manufacturing techniques. Systematically investigating these characteristics is challenging: computational simulations are time-intensive and costly, while current in situ quantification techniques are limited in scalability and batch size. We here combine synchrotron small-angle X-ray scattering with Flash NanoPrecipitation, a scalable turbulent mixing technology, to capture time-resolved measurements of the formation of liquid crystal phases under nanoconfinement during and after nanoprecipitation. This technique reveals that self-assembly occurs in two steps, with internal liquid crystal self-assembly occurring on longer time scales (seconds to minutes) than initial nanoprecipitation (milliseconds) as a function of formulation parameters.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.