{"title":"Cistanthe longiscapa exhibits ecophysiological and molecular adaptations to the arid environments of the Atacama Desert","authors":"Paulina Ossa, Adrián A Moreno, Daniela Orellana, Mónica Toro, Tomás Carrasco-Valenzuela, Anibal Riveros, Claudio Meneses, Ricardo Nilo-Poyanco, Ariel Orellana","doi":"10.1093/plphys/kiaf068","DOIUrl":null,"url":null,"abstract":"Understanding how plants survive extreme conditions is essential to breeding resilient crops. Cistanthe longiscapa, which flourishes in the Atacama Desert, provides a rare glimpse into plant resilience. To uncover the genetic basis of its stress tolerance, we investigated the ecophysiological and transcriptomic responses of C. longiscapa from 3 sites with low but different precipitation levels. Ecophysiological analyses were performed on samples collected in the field at dusk and dawn, which are crucial stages in crassulacean acid metabolism (CAM), a water-efficient type of photosynthesis. Additional transcriptomic analysis allowed us to evaluate CAM intensity in C. longiscapa and identify changes in the molecular signature of these plants. Our results show that C. longiscapa displays considerable ecophysiological trait response variation across the 3 sites, including variations in markers such as nocturnal acid accumulation, isotopic carbon ratio, and succulence, among others. Analysis of gene expression patterns revealed differences among plants exhibiting varying intensities of CAM photosynthesis and identified key molecular signatures associated with their ecological strategies. Additionally, genes related to stress responses, plastid activities, and circadian rhythm show contrasting expression levels between strong and weak CAM plants, and this expression profile is shared with other CAM plants under stress. Our findings demonstrate that C. longiscapa is a valuable resource for identifying genes involved in the transition between different CAM intensities. This may lead to the discovery of genes that enhance plant tolerance to stressful environments.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"74 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf068","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding how plants survive extreme conditions is essential to breeding resilient crops. Cistanthe longiscapa, which flourishes in the Atacama Desert, provides a rare glimpse into plant resilience. To uncover the genetic basis of its stress tolerance, we investigated the ecophysiological and transcriptomic responses of C. longiscapa from 3 sites with low but different precipitation levels. Ecophysiological analyses were performed on samples collected in the field at dusk and dawn, which are crucial stages in crassulacean acid metabolism (CAM), a water-efficient type of photosynthesis. Additional transcriptomic analysis allowed us to evaluate CAM intensity in C. longiscapa and identify changes in the molecular signature of these plants. Our results show that C. longiscapa displays considerable ecophysiological trait response variation across the 3 sites, including variations in markers such as nocturnal acid accumulation, isotopic carbon ratio, and succulence, among others. Analysis of gene expression patterns revealed differences among plants exhibiting varying intensities of CAM photosynthesis and identified key molecular signatures associated with their ecological strategies. Additionally, genes related to stress responses, plastid activities, and circadian rhythm show contrasting expression levels between strong and weak CAM plants, and this expression profile is shared with other CAM plants under stress. Our findings demonstrate that C. longiscapa is a valuable resource for identifying genes involved in the transition between different CAM intensities. This may lead to the discovery of genes that enhance plant tolerance to stressful environments.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.