Xi Chen, Shuqing Yang, Xiaoyu Wen, Yuxuan Wang, Wei Wang
{"title":"Study on soil salinity inversion of different crop types based on multi-time series","authors":"Xi Chen, Shuqing Yang, Xiaoyu Wen, Yuxuan Wang, Wei Wang","doi":"10.1007/s11104-025-07455-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and Aims</h3><p>Soil salinization is a major cause of land degradation and ecological damage. Traditional soil salinity monitoring techniques are limited in coverage and scalability, while remote sensing offers broader applicability and efficiency. This study addresses spatiotemporal variations in soil salt content (SSC) inversion across crop types in Tongliao City, Inner Mongolia, China, using an innovative integration of multi-temporal data and crop cover types, improving remote sensing monitoring accuracy.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Field sampling data and Sentinel-2 images from June to September in 2021 and 2022 were utilized. The deep learning U-net model classified key crops, including sunflower (33%), beet (12%), and maize (55%), and analyzed the effects of crop coverage on SSC across multiple time series. Six spectral variables were selected using the SVR-RFE model (R<sup>2</sup> = 0.994, MAE = 0.016). SSC prediction models were developed using three machine learning methods (DBO-RF, PSO-SVM, BO-BP) and a deep learning method (Transformer).</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Considering crop coverage variations improved the sensitivity of spectral variables to SSC response, enhancing predictive accuracy and model stability. Crop classification showed that the salinity index (SIs) correlated more strongly with SSC than the vegetation index (VIs), with SI6 having the highest correlation coefficient of 0.50. The Transformer model, using multi-time series data, outperformed other algorithms, achieving an average R2 of 0.71. The SSC inversion map from the Transformer model closely matched field survey trends.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>This research provides a novel approach to soil salinity prediction using satellite remote sensing, offering a scalable solution for monitoring salinization and valuable insights for environmental management and agricultural planning.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"34 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07455-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and Aims
Soil salinization is a major cause of land degradation and ecological damage. Traditional soil salinity monitoring techniques are limited in coverage and scalability, while remote sensing offers broader applicability and efficiency. This study addresses spatiotemporal variations in soil salt content (SSC) inversion across crop types in Tongliao City, Inner Mongolia, China, using an innovative integration of multi-temporal data and crop cover types, improving remote sensing monitoring accuracy.
Methods
Field sampling data and Sentinel-2 images from June to September in 2021 and 2022 were utilized. The deep learning U-net model classified key crops, including sunflower (33%), beet (12%), and maize (55%), and analyzed the effects of crop coverage on SSC across multiple time series. Six spectral variables were selected using the SVR-RFE model (R2 = 0.994, MAE = 0.016). SSC prediction models were developed using three machine learning methods (DBO-RF, PSO-SVM, BO-BP) and a deep learning method (Transformer).
Results
Considering crop coverage variations improved the sensitivity of spectral variables to SSC response, enhancing predictive accuracy and model stability. Crop classification showed that the salinity index (SIs) correlated more strongly with SSC than the vegetation index (VIs), with SI6 having the highest correlation coefficient of 0.50. The Transformer model, using multi-time series data, outperformed other algorithms, achieving an average R2 of 0.71. The SSC inversion map from the Transformer model closely matched field survey trends.
Conclusion
This research provides a novel approach to soil salinity prediction using satellite remote sensing, offering a scalable solution for monitoring salinization and valuable insights for environmental management and agricultural planning.
期刊介绍:
Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.