Wei Li, Chong Chu, Taikui Zhang, Haochen Sun, Shiyao Wang, Zeyuan Liu, Zijun Wang, Hui Li, Yuqi Li, Xingtan Zhang, Zhiqiang Geng, Youqing Wang, Yi Li, Hengtao Zhang, Weishu Fan, Yi Wang, Xuefeng Xu, Lailiang Cheng, Dehui Zhang, Yao Xiong, Huixia Li, Bowen Zhou, Qingmei Guan, Cecilia H. Deng, Yongming Han, Hong Ma, Zhenhai Han
{"title":"Pan-genome analysis reveals the evolution and diversity of Malus","authors":"Wei Li, Chong Chu, Taikui Zhang, Haochen Sun, Shiyao Wang, Zeyuan Liu, Zijun Wang, Hui Li, Yuqi Li, Xingtan Zhang, Zhiqiang Geng, Youqing Wang, Yi Li, Hengtao Zhang, Weishu Fan, Yi Wang, Xuefeng Xu, Lailiang Cheng, Dehui Zhang, Yao Xiong, Huixia Li, Bowen Zhou, Qingmei Guan, Cecilia H. Deng, Yongming Han, Hong Ma, Zhenhai Han","doi":"10.1038/s41588-025-02166-6","DOIUrl":null,"url":null,"abstract":"Malus Mill., a genus of temperate perennial trees with great agricultural and ecological value, has diversified through hybridization, polyploidy and environmental adaptation. Limited genomic resources for wild Malus species have hindered the understanding of their evolutionary history and genetic diversity. We sequenced and assembled 30 high-quality Malus genomes, representing 20 diploids and 10 polyploids across major evolutionary lineages and geographical regions. Phylogenomic analyses revealed ancient gene duplications and conversions, while six newly defined genome types, including an ancestral type shared by polyploid species, facilitated the detection of strong signals for extensive introgressions. The graph-based pan-genome captured shared and species-specific structural variations, facilitating the development of a molecular marker for apple scab resistance. Our pipeline for analyzing selective sweep identified a mutation in MdMYB5 having reduced cold and disease resistance during domestication. This study advances Malus genomics, uncovering genetic diversity and evolutionary insights while enhancing breeding for desirable traits. A graph-based pan-genome constructed from 30 genome assemblies covering Malus domestica ‘Golden Delicious’ and 29 wild diploid or polyploid Malus species highlights structural variation and genome evolution in the Malus genus.","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"57 5","pages":"1274-1286"},"PeriodicalIF":31.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41588-025-02166-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41588-025-02166-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Malus Mill., a genus of temperate perennial trees with great agricultural and ecological value, has diversified through hybridization, polyploidy and environmental adaptation. Limited genomic resources for wild Malus species have hindered the understanding of their evolutionary history and genetic diversity. We sequenced and assembled 30 high-quality Malus genomes, representing 20 diploids and 10 polyploids across major evolutionary lineages and geographical regions. Phylogenomic analyses revealed ancient gene duplications and conversions, while six newly defined genome types, including an ancestral type shared by polyploid species, facilitated the detection of strong signals for extensive introgressions. The graph-based pan-genome captured shared and species-specific structural variations, facilitating the development of a molecular marker for apple scab resistance. Our pipeline for analyzing selective sweep identified a mutation in MdMYB5 having reduced cold and disease resistance during domestication. This study advances Malus genomics, uncovering genetic diversity and evolutionary insights while enhancing breeding for desirable traits. A graph-based pan-genome constructed from 30 genome assemblies covering Malus domestica ‘Golden Delicious’ and 29 wild diploid or polyploid Malus species highlights structural variation and genome evolution in the Malus genus.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution