Core-Shell Structured Composite Solid Electrolyte Enables High-Rate All-Solid-State Sodium Batteries

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu Feng, Jingyi Liu, Zhixuan Wei, Shiyu Yao, Gang Chen, Fei Du
{"title":"Core-Shell Structured Composite Solid Electrolyte Enables High-Rate All-Solid-State Sodium Batteries","authors":"Yu Feng,&nbsp;Jingyi Liu,&nbsp;Zhixuan Wei,&nbsp;Shiyu Yao,&nbsp;Gang Chen,&nbsp;Fei Du","doi":"10.1002/anie.202507247","DOIUrl":null,"url":null,"abstract":"<p>All-solid-state sodium batteries (ASSSBs) have emerged as the promising candidates for large-scale energy storage; however, they still face challenges related to ionic transport across multi-scale interfaces, which leads to suboptimal battery performances. In this study, we propose a core-shell structured composite electrolyte with Na<sub>3</sub>PS<sub>4</sub> sulfide solid electrolyte (SE) as the core and Na<sub>2.25</sub>Y<sub>0.25</sub>Zr<sub>0.75</sub>Cl<sub>6</sub> halide SE as the shell. This design strategy boosts high SE's oxidative stability (4.0 V), ionic conductivity (0.44 mS cm<sup>−1</sup>) and mechanical strength (Young's modulus of 9.19 GPa). These properties enable the composite SE to effectively mitigate the chemo-mechanically-induced multi-interfacial contact losses at the cathode side. Additionally, the homogeneous full-cell configuration, utilizing the core-shell structured composite electrolyte as both catholyte and SE layer, demonstrates superior rate capability, achieving a discharge capacity of 76.4 mAh g⁻¹ at 2.0 C, significantly outperforming the conventional sandwich-like designs. This work not only provides a novel design strategy for functional SE but also offers valuable insights into the chemo-mechanical failure mechanism at multiscale interfaces of ASSSBs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 25","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202507247","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state sodium batteries (ASSSBs) have emerged as the promising candidates for large-scale energy storage; however, they still face challenges related to ionic transport across multi-scale interfaces, which leads to suboptimal battery performances. In this study, we propose a core-shell structured composite electrolyte with Na3PS4 sulfide solid electrolyte (SE) as the core and Na2.25Y0.25Zr0.75Cl6 halide SE as the shell. This design strategy boosts high SE's oxidative stability (4.0 V), ionic conductivity (0.44 mS cm−1) and mechanical strength (Young's modulus of 9.19 GPa). These properties enable the composite SE to effectively mitigate the chemo-mechanically-induced multi-interfacial contact losses at the cathode side. Additionally, the homogeneous full-cell configuration, utilizing the core-shell structured composite electrolyte as both catholyte and SE layer, demonstrates superior rate capability, achieving a discharge capacity of 76.4 mAh g⁻¹ at 2.0 C, significantly outperforming the conventional sandwich-like designs. This work not only provides a novel design strategy for functional SE but also offers valuable insights into the chemo-mechanical failure mechanism at multiscale interfaces of ASSSBs.

Abstract Image

核壳结构复合固体电解质可实现高倍率全固态钠电池
全固态钠电池(ASSSBs)已成为大规模储能的有希望的候选者;然而,他们仍然面临着与跨多尺度界面的离子传输相关的挑战,这导致电池性能不理想。在这项研究中,我们提出了一种核壳结构的复合电解质,以Na3PS4硫化固体电解质(SE)为核心,Na2.25Y0.25Zr0.75Cl6卤化物SE为壳。这种设计策略提高了SE的氧化稳定性(4.0 V)、离子电导率(0.44 mS cm‐1)和机械强度(9.19 GPa的杨氏模量)。这些特性使复合SE能够有效地减轻阴极侧化学机械诱导的多界面接触损耗。此外,均匀的全电池结构,利用核-壳结构复合电解质作为阴极和SE层,显示出优越的倍率能力,在2.0℃下实现76.4 mAh g⁻¹的放电容量,显著优于传统的三明治式设计。这项工作不仅为功能性SE提供了一种新的设计策略,而且为asssb多尺度界面的化学-机械失效机制提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信