Nested holography

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Kostas Filippas
{"title":"Nested holography","authors":"Kostas Filippas","doi":"10.1103/physrevd.111.086018","DOIUrl":null,"url":null,"abstract":"Recently, we introduced a symmetry on the structure of angular momentum that interchanges internal and external degrees of freedom. The spin-orbit duality is a holographic map that projects a massive theory in four-dimensional flat spacetime onto the three-dimensional S</a:mi>2</a:mn></a:msup>×</a:mo>R</a:mi></a:math> null infinity. This cylinder has radius <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>R</e:mi><e:mo>∼</e:mo><e:mn>1</e:mn><e:mo>/</e:mo><e:mi>m</e:mi></e:math> and, quantum mechanically, its vacuum state is a fuzzy sphere. Progress shows that, first, this duality realizes the Hopf map, a fact manifest on the superparticle. Second, the bulk Poincarè group transforms into the conformal group on the cylinder. In fact, the general version of the duality yields that the dual symmetries include the Bondi-Metzner-Sachs group, as is appropriate at null infinity. As an example, the Landau levels in <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msup><g:mi mathvariant=\"double-struck\">R</g:mi><g:mn>3</g:mn></g:msup></g:math> are shown to match those of a Dirac monopole on the dual <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:msup><j:mi mathvariant=\"double-struck\">S</j:mi><j:mn>2</j:mn></j:msup></j:math>, in the thermodynamic limit. This dual system is actually identified with a three-dimensional critical Ising model. The map is then realized on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>N</m:mi><m:mi>f</m:mi></m:msub></m:math> massive fermions in flat space which, indeed, are the hologram of <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mn>2</o:mn><o:msub><o:mi>N</o:mi><o:mi>f</o:mi></o:msub></o:math> massless fermions on the cylinder. However, the dual space is really the conformal class of <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:msup><q:mi mathvariant=\"double-struck\">S</q:mi><q:mn>2</q:mn></q:msup><q:mo>×</q:mo><q:mi mathvariant=\"double-struck\">R</q:mi></q:math>, naturally enclosing the universal cover of a conformally compactified four-dimensional anti–de Sitter (<u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:msub><u:mrow><u:mi>AdS</u:mi></u:mrow><u:mrow><u:mn>4</u:mn></u:mrow></u:msub></u:mrow></u:math>) spacetime. We argue that, in the absence of interactions, the massless fermions on the conformal boundary are, in turn, dual to <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:msub><w:mi>N</w:mi><w:mi>f</w:mi></w:msub></w:math> massive fermions in <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mrow><y:msub><y:mrow><y:mi>AdS</y:mi></y:mrow><y:mrow><y:mn>4</y:mn></y:mrow></y:msub></y:mrow></y:math>. For free fermions, all path integrals—the ones in R</ab:mi>4</ab:mn></ab:msup></ab:math> and <db:math xmlns:db=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><db:msup><db:mi mathvariant=\"double-struck\">S</db:mi><db:mn>2</db:mn></db:msup><db:mo>×</db:mo><db:mi mathvariant=\"double-struck\">R</db:mi></db:math> and <hb:math xmlns:hb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><hb:mrow><hb:msub><hb:mrow><hb:mi>AdS</hb:mi></hb:mrow><hb:mrow><hb:mn>4</hb:mn></hb:mrow></hb:msub></hb:mrow></hb:math>—are shown to match. Hence, AdS/CFT duality emerges into a larger context, where one holography nests inside the other, suggesting a complete holographic bridge between fields in flat space and the AdS superstring. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"7 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.086018","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, we introduced a symmetry on the structure of angular momentum that interchanges internal and external degrees of freedom. The spin-orbit duality is a holographic map that projects a massive theory in four-dimensional flat spacetime onto the three-dimensional S2×R null infinity. This cylinder has radius R1/m and, quantum mechanically, its vacuum state is a fuzzy sphere. Progress shows that, first, this duality realizes the Hopf map, a fact manifest on the superparticle. Second, the bulk Poincarè group transforms into the conformal group on the cylinder. In fact, the general version of the duality yields that the dual symmetries include the Bondi-Metzner-Sachs group, as is appropriate at null infinity. As an example, the Landau levels in R3 are shown to match those of a Dirac monopole on the dual S2, in the thermodynamic limit. This dual system is actually identified with a three-dimensional critical Ising model. The map is then realized on Nf massive fermions in flat space which, indeed, are the hologram of 2Nf massless fermions on the cylinder. However, the dual space is really the conformal class of S2×R, naturally enclosing the universal cover of a conformally compactified four-dimensional anti–de Sitter (AdS4) spacetime. We argue that, in the absence of interactions, the massless fermions on the conformal boundary are, in turn, dual to Nf massive fermions in AdS4. For free fermions, all path integrals—the ones in R4 and S2×R and AdS4—are shown to match. Hence, AdS/CFT duality emerges into a larger context, where one holography nests inside the other, suggesting a complete holographic bridge between fields in flat space and the AdS superstring. Published by the American Physical Society 2025
嵌套的全息术
最近,我们在角动量结构上引入了一种内部自由度和外部自由度互换的对称性。自旋轨道二象性是一个全息图,它将四维平坦时空中的大质量理论投射到三维的S2×R零无穷大上。这个圆柱体的半径为R ~ 1/m,从量子力学上讲,它的真空状态是一个模糊球。进展表明,首先,这种二象性实现了霍普夫图,这是一个在超粒子上表现出来的事实。其次,体积Poincarè基团转变为圆柱上的保形基团。事实上,对偶的一般版本表明对偶对称性包括Bondi-Metzner-Sachs群,这在零无穷处是合适的。作为一个例子,在热力学极限下,R3中的朗道能级与双S2上的狄拉克单极子的朗道能级相匹配。这个双系统实际上是用一个三维临界伊辛模型来确定的。然后在平坦空间中的Nf质量费米子上实现映射,这实际上是圆柱体上2Nf无质量费米子的全息图。然而,对偶空间实际上是S2×R的共形类,自然地包围了一个共形紧化的四维反德西特(AdS4)时空的普遍覆盖。我们认为,在没有相互作用的情况下,保形边界上的无质量费米子反过来是AdS4中对Nf质量费米子的对偶。对于自由费米子,所有路径积分——R4、S2×R和ads4中的积分——都是匹配的。因此,AdS/CFT对偶性出现在一个更大的背景下,其中一个全息嵌入另一个全息,表明平坦空间中的场和AdS超弦之间有一个完整的全息桥梁。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信