Modelling and parameter identification of penicillin fermentation using physics-informed neural networks

IF 1.6 4区 工程技术 Q3 ENGINEERING, CHEMICAL
Siqi Zhao, Zhonggai Zhao, Fei Liu
{"title":"Modelling and parameter identification of penicillin fermentation using physics-informed neural networks","authors":"Siqi Zhao,&nbsp;Zhonggai Zhao,&nbsp;Fei Liu","doi":"10.1002/cjce.25510","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of machine learning technology and computer science, artificial neural networks have become an effective and popular method in the existing modelling research of penicillin fermentation process. Although these networks can capture the complexity of the fermentation process, they may lead to overfitting and require large amounts of data. In addition, the inference of the model on the data may not satisfy the physical laws. In this paper, a penicillin fermentation modelling method based on physics-informed neural networks is proposed. The fermentation mechanism equations are combined with the neural networks to develop the model as constraints. First, a general penicillin fermentation mechanism model is built according to known prior knowledge, and then its unknown nonlinear dynamic parameters are identified by physics-informed neural networks. Finally, the successfully trained model exhibits a high prediction accuracy, which not only satisfies the physical laws in the loss function, but also verifies the effectiveness of the proposed mechanism model.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"103 5","pages":"1965-1977"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25510","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of machine learning technology and computer science, artificial neural networks have become an effective and popular method in the existing modelling research of penicillin fermentation process. Although these networks can capture the complexity of the fermentation process, they may lead to overfitting and require large amounts of data. In addition, the inference of the model on the data may not satisfy the physical laws. In this paper, a penicillin fermentation modelling method based on physics-informed neural networks is proposed. The fermentation mechanism equations are combined with the neural networks to develop the model as constraints. First, a general penicillin fermentation mechanism model is built according to known prior knowledge, and then its unknown nonlinear dynamic parameters are identified by physics-informed neural networks. Finally, the successfully trained model exhibits a high prediction accuracy, which not only satisfies the physical laws in the loss function, but also verifies the effectiveness of the proposed mechanism model.

利用物理信息神经网络对青霉素发酵进行建模和参数识别
随着机器学习技术和计算机科学的迅速发展,人工神经网络已成为青霉素发酵过程建模研究中一种有效而流行的方法。虽然这些网络可以捕捉发酵过程的复杂性,但它们可能导致过拟合并需要大量数据。此外,模型对数据的推断可能不满足物理定律。本文提出了一种基于物理信息神经网络的青霉素发酵建模方法。将发酵机理方程与神经网络相结合,建立模型作为约束条件。首先,根据已知的先验知识建立青霉素发酵机理的一般模型,然后利用物理信息神经网络对其未知的非线性动态参数进行辨识。最后,训练成功的模型具有较高的预测精度,不仅满足了损失函数中的物理规律,而且验证了所提机理模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Canadian Journal of Chemical Engineering
Canadian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
3.60
自引率
14.30%
发文量
448
审稿时长
3.2 months
期刊介绍: The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信