Sandra Fernando, Viktor Sowinski-Mydlarz, Subeksha Shrestha, Sunila Maharjan, Duncan Stewart, Dee Bhakta, Gary McLean, Sarah Illingworth
{"title":"Vitamin D Analysis for Sustainable Healthcare in Inner London Borough","authors":"Sandra Fernando, Viktor Sowinski-Mydlarz, Subeksha Shrestha, Sunila Maharjan, Duncan Stewart, Dee Bhakta, Gary McLean, Sarah Illingworth","doi":"10.1111/coin.70050","DOIUrl":null,"url":null,"abstract":"<p>Vitamin D is vital for bone health, immune system support, and muscle function. Deficiency in Vitamin D is widespread, with up to 65% of individuals in certain populations, including Black students at London Metropolitan University, UK, being affected. This study focuses on the need for a deeper understanding of Vitamin D prescription patterns, specifically within an inner London borough, using advanced data analytics. Previous analysis, such as ones conducted by \nOpenPrescribing.net, has investigated NHS prescription data but lacked a focused examination on Vitamin D. Our study introduces a novel computational approach, integrating NHS datasets from 2013 to 2023. We developed a web-hosted dashboard using Python, Flask, Cesium, PowerBI, and libraries such as Pandas, Scikit-learn to provide real-time data visualization and predictive analytics. Our methodology involved API-driven ingestion of large-scale data, focusing on Vitamin D prescriptions in a borough, and mapping this against patient numbers. We used feature manipulation and model training to gain insights into prescription counts, dosages, medication types, and formulations. This interactive platform supports dynamic reporting through PowerBI and Cesium. Our findings reveal significant variations in prescription patterns among GP surgeries influenced by socioeconomic factors. This interdisciplinary project, in future collaboration with local GP federations, United Kingdom, enhances computational health data analysis and aims to inform better prescription practices and healthcare policies, ultimately improving policy practice and public health outcomes.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.70050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70050","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Vitamin D is vital for bone health, immune system support, and muscle function. Deficiency in Vitamin D is widespread, with up to 65% of individuals in certain populations, including Black students at London Metropolitan University, UK, being affected. This study focuses on the need for a deeper understanding of Vitamin D prescription patterns, specifically within an inner London borough, using advanced data analytics. Previous analysis, such as ones conducted by
OpenPrescribing.net, has investigated NHS prescription data but lacked a focused examination on Vitamin D. Our study introduces a novel computational approach, integrating NHS datasets from 2013 to 2023. We developed a web-hosted dashboard using Python, Flask, Cesium, PowerBI, and libraries such as Pandas, Scikit-learn to provide real-time data visualization and predictive analytics. Our methodology involved API-driven ingestion of large-scale data, focusing on Vitamin D prescriptions in a borough, and mapping this against patient numbers. We used feature manipulation and model training to gain insights into prescription counts, dosages, medication types, and formulations. This interactive platform supports dynamic reporting through PowerBI and Cesium. Our findings reveal significant variations in prescription patterns among GP surgeries influenced by socioeconomic factors. This interdisciplinary project, in future collaboration with local GP federations, United Kingdom, enhances computational health data analysis and aims to inform better prescription practices and healthcare policies, ultimately improving policy practice and public health outcomes.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.