Orkhan Gulahmadov, Mustafa B. Muradov, Lala Gahramanli, Aynura Karimova, Sevinj Mammadyarova, Stefano Belluci, Ali Musayev, Jiseok Kim
{"title":"Development of Nylon/Fe3O4 Nanocomposite Triboelectric Nanogenerators for Self-Powered Transmission Line Monitoring Applications","authors":"Orkhan Gulahmadov, Mustafa B. Muradov, Lala Gahramanli, Aynura Karimova, Sevinj Mammadyarova, Stefano Belluci, Ali Musayev, Jiseok Kim","doi":"10.1002/eem2.12880","DOIUrl":null,"url":null,"abstract":"<p>This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe<sub>3</sub>O<sub>4</sub> nanoparticles into nylon films using a spray coating technique. Five triboelectric nanogenerator prototypes were created: one with regular nylon and four with nylon/Fe<sub>3</sub>O<sub>4</sub> nanocomposites featuring varying nanoparticle densities. The electrical output, measured by open-circuit voltage and short-circuit current, showed significant improvements in the nanocomposite-based triboelectric nanogenerators compared to the nylon-only triboelectric nanogenerator. When a weak magnetic field was applied during nanocomposite preparation, the maximum voltage and current reached 56.3 V and 4.62 μA, respectively. Further analysis revealed that the magnetic field during the drying process aligned the magnetic domains, boosting output efficiency. These findings demonstrate the potential of Fe<sub>3</sub>O<sub>4</sub> nanoparticles to enhance electrostatic and magnetic interactions in triboelectric nanogenerators, leading to improved energy-harvesting performance. This approach presents a promising strategy for developing high-performance triboelectric nanogenerators for sustainable energy and sensor applications.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 3","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12880","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12880","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores how the performance of triboelectric nanogenerators can be enhanced by incorporating Fe3O4 nanoparticles into nylon films using a spray coating technique. Five triboelectric nanogenerator prototypes were created: one with regular nylon and four with nylon/Fe3O4 nanocomposites featuring varying nanoparticle densities. The electrical output, measured by open-circuit voltage and short-circuit current, showed significant improvements in the nanocomposite-based triboelectric nanogenerators compared to the nylon-only triboelectric nanogenerator. When a weak magnetic field was applied during nanocomposite preparation, the maximum voltage and current reached 56.3 V and 4.62 μA, respectively. Further analysis revealed that the magnetic field during the drying process aligned the magnetic domains, boosting output efficiency. These findings demonstrate the potential of Fe3O4 nanoparticles to enhance electrostatic and magnetic interactions in triboelectric nanogenerators, leading to improved energy-harvesting performance. This approach presents a promising strategy for developing high-performance triboelectric nanogenerators for sustainable energy and sensor applications.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.