A short proof of Helson's conjecture

IF 0.8 3区 数学 Q2 MATHEMATICS
Ofir Gorodetsky, Mo Dick Wong
{"title":"A short proof of Helson's conjecture","authors":"Ofir Gorodetsky,&nbsp;Mo Dick Wong","doi":"10.1112/blms.70015","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>α</mi>\n <mo>:</mo>\n <mi>N</mi>\n <mo>→</mo>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n </mrow>\n <annotation>$\\alpha \\colon \\mathbb {N}\\rightarrow S^1$</annotation>\n </semantics></math> be the Steinhaus multiplicative function: a completely multiplicative function such that <span></span><math>\n <semantics>\n <msub>\n <mrow>\n <mo>(</mo>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n <mi>p</mi>\n <mo>)</mo>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mspace></mspace>\n <mtext>prime</mtext>\n </mrow>\n </msub>\n <annotation>$(\\alpha (p))_{p\\text{ prime}}$</annotation>\n </semantics></math> are i.i.d. random variables uniformly distributed on the complex unit circle <span></span><math>\n <semantics>\n <msup>\n <mi>S</mi>\n <mn>1</mn>\n </msup>\n <annotation>$S^1$</annotation>\n </semantics></math>. Helson conjectured that <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mi>E</mi>\n <mo>|</mo>\n </mrow>\n <msub>\n <mo>∑</mo>\n <mrow>\n <mi>n</mi>\n <mo>⩽</mo>\n <mi>x</mi>\n </mrow>\n </msub>\n <mrow>\n <mi>α</mi>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>)</mo>\n </mrow>\n <mo>|</mo>\n <mo>=</mo>\n <mi>o</mi>\n </mrow>\n <mrow>\n <mo>(</mo>\n <msqrt>\n <mi>x</mi>\n </msqrt>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathbb {E}|\\sum _{n\\leqslant x}\\alpha (n)|=o(\\sqrt {x})$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$x \\rightarrow \\infty$</annotation>\n </semantics></math>, and this was solved in a strong form by Harper. We give a short proof of the conjecture using a result of Saksman and Webb on a random model for the zeta function.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1065-1076"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70015","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let α : N S 1 $\alpha \colon \mathbb {N}\rightarrow S^1$ be the Steinhaus multiplicative function: a completely multiplicative function such that ( α ( p ) ) p prime $(\alpha (p))_{p\text{ prime}}$ are i.i.d. random variables uniformly distributed on the complex unit circle S 1 $S^1$ . Helson conjectured that E | n x α ( n ) | = o ( x ) $\mathbb {E}|\sum _{n\leqslant x}\alpha (n)|=o(\sqrt {x})$ as x $x \rightarrow \infty$ , and this was solved in a strong form by Harper. We give a short proof of the conjecture using a result of Saksman and Webb on a random model for the zeta function.

Helson猜想的简短证明
设α: N→s1 $\alpha \colon \mathbb {N}\rightarrow S^1$为斯坦豪斯乘法函数:一个完全乘法函数,使得(α (p)) p ' $(\alpha (p))_{p\text{ prime}}$为i.d个均匀分布在复单位圆s1上的随机变量$S^1$。Helson推测E |∑n≥x α (n) | = 0 (x) $\mathbb {E}|\sum _{n\leqslant x}\alpha (n)|=o(\sqrt {x})$ as x→∞$x \rightarrow \infty$,这个问题被哈珀以强形式解决了。我们利用Saksman和Webb在zeta函数随机模型上的一个结果,给出了这个猜想的简短证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信