{"title":"Unveiling the Potential of Metal Diborides for Electrocatalytic Water Splitting: A Comprehensive Review","authors":"Ebrahim Sadeghi, Sanaz Chamani, Naeimeh Sadat Peighambardoust, Umut Aydemir","doi":"10.1002/eem2.12873","DOIUrl":null,"url":null,"abstract":"<p>Electrocatalytic water splitting (EWS) driven by renewable energy is vital for clean hydrogen (H<sub>2</sub>) production and reducing reliance on fossil fuels. While IrO<sub>2</sub> and RuO<sub>2</sub> are the leading electrocatalysts for the oxygen evolution reaction (OER) and Pt for the hydrogen evolution reaction (HER) in acidic environments, the need for efficient, stable, and affordable materials persists. Recently, transition-metal borides (TMBs), particularly metal diborides (MDbs), have gained attention due to their unique layered crystal structures with multicentered boron bonds, offering remarkable physicochemical properties. Their nearly 2D structures boost electrochemical performance by offering high conductivity and a large active surface area, making them well-suited for advanced energy storage and conversion technologies. This review provides a comprehensive overview of the critical factors for water splitting, the crystal and electronic structures of MDbs, and their synthetic strategies. Furthermore, it examines the relationship between catalytic performance and intermediate adsorption as elucidated by first-principle calculations. The review also highlights the latest experimental advancements in MDb-based electrocatalysts and addresses the current challenges and future directions for their development.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 3","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12873","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12873","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic water splitting (EWS) driven by renewable energy is vital for clean hydrogen (H2) production and reducing reliance on fossil fuels. While IrO2 and RuO2 are the leading electrocatalysts for the oxygen evolution reaction (OER) and Pt for the hydrogen evolution reaction (HER) in acidic environments, the need for efficient, stable, and affordable materials persists. Recently, transition-metal borides (TMBs), particularly metal diborides (MDbs), have gained attention due to their unique layered crystal structures with multicentered boron bonds, offering remarkable physicochemical properties. Their nearly 2D structures boost electrochemical performance by offering high conductivity and a large active surface area, making them well-suited for advanced energy storage and conversion technologies. This review provides a comprehensive overview of the critical factors for water splitting, the crystal and electronic structures of MDbs, and their synthetic strategies. Furthermore, it examines the relationship between catalytic performance and intermediate adsorption as elucidated by first-principle calculations. The review also highlights the latest experimental advancements in MDb-based electrocatalysts and addresses the current challenges and future directions for their development.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.