RSTNet: A Spatio-Temporal Attention Framework for Human Action Recognition

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Cui Haifeng, Hou Zhihong, Zhang Tianyu, Duan Daxin, Yao Mingkai, Liu Taoran, Shang Mingwei, Qu Yang, Wang Yafei, Wang Hongbo, Yao Tianming, Tian Baofeng
{"title":"RSTNet: A Spatio-Temporal Attention Framework for Human Action Recognition","authors":"Cui Haifeng,&nbsp;Hou Zhihong,&nbsp;Zhang Tianyu,&nbsp;Duan Daxin,&nbsp;Yao Mingkai,&nbsp;Liu Taoran,&nbsp;Shang Mingwei,&nbsp;Qu Yang,&nbsp;Wang Yafei,&nbsp;Wang Hongbo,&nbsp;Yao Tianming,&nbsp;Tian Baofeng","doi":"10.1049/ell2.70191","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces RSTNet, a neural network model based on spatio-temporal attention (STA), designed to improve the accuracy of human action recognition. The model uses heatmaps as input, employs 3D-ResNet as its backbone network, and incorporates STA modules and squeeze-and-excitation (SE) modules. Experiments on the UCF101 dataset demonstrate that RSTNet outperforms other classic methods in key metrics such as Top1 accuracy, Top5 accuracy and average accuracy. Ablation studies further validate the contribution of each module to the model's performance, proving the effectiveness of this approach in capturing spatio-temporal features and enhancing action recognition precision.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70191","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ell2.70191","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces RSTNet, a neural network model based on spatio-temporal attention (STA), designed to improve the accuracy of human action recognition. The model uses heatmaps as input, employs 3D-ResNet as its backbone network, and incorporates STA modules and squeeze-and-excitation (SE) modules. Experiments on the UCF101 dataset demonstrate that RSTNet outperforms other classic methods in key metrics such as Top1 accuracy, Top5 accuracy and average accuracy. Ablation studies further validate the contribution of each module to the model's performance, proving the effectiveness of this approach in capturing spatio-temporal features and enhancing action recognition precision.

Abstract Image

RSTNet:一个用于人类动作识别的时空注意框架
本文介绍了一种基于时空注意(STA)的神经网络模型RSTNet,旨在提高人类动作识别的准确性。该模型以热图为输入,以3D-ResNet为骨干网络,结合STA模块和挤压激励(SE)模块。在UCF101数据集上的实验表明,RSTNet在Top1准确率、Top5准确率和平均准确率等关键指标上优于其他经典方法。消融研究进一步验证了每个模块对模型性能的贡献,证明了该方法在捕获时空特征和提高动作识别精度方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信