Biswajit Basu, Srabona Dutta, Monosiz Rahaman, Swarnali Dutta, Mohd Nazam Ansari, Bhupendra G. Prajapati, Ayon Dutta, Sourav Ghosh
{"title":"Exploring the Impact of Polysaccharide-Based Nanoemulsions in Drug Delivery","authors":"Biswajit Basu, Srabona Dutta, Monosiz Rahaman, Swarnali Dutta, Mohd Nazam Ansari, Bhupendra G. Prajapati, Ayon Dutta, Sourav Ghosh","doi":"10.1002/jbm.b.35582","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Nanoemulsions are tiny mixtures of water and oil stabilized by surfactants, and they have become increasingly popular across various industries, including medicine. With droplet sizes in the nanometer scale, these mixtures are both compact and effective. This discussion explores the potential of polysaccharide-based nanotechnology as an innovative approach to drug delivery. Nanoemulsions offer several benefits, such as enhanced drug solubility and bioavailability, which are crucial for drugs that poorly dissolve in water. The incorporation of natural polysaccharides as emulsifiers in these nanoemulsions ensures their biocompatibility and safety within the body. Additionally, nanoemulsions can facilitate a sustained release of medications, allowing for gradual drug release over an extended period. This controlled release can be achieved through the careful selection and formulation of polysaccharides. This review addresses the methods for producing polysaccharide-based nanoemulsions and examines their physical and chemical properties. It highlights the influence of polysaccharide molecular weight and structure on the stability of nanoemulsions and the effectiveness of drug encapsulation. By understanding these factors, researchers can develop more efficient and safe drug delivery systems utilizing nanoemulsions. Additionally, the present article provides explicit and thorough information about the use of NPLS-based nano-carriers encapsulating a number of drugs designed to treat a variety of conditions, such as diabetes, cancer, HIV, malaria, cardiovascular and respiratory diseases, and skin diseases. For this reason, it is very important to review the most recent developments in polysaccharide-based nano-biocarriers in drug delivery and their application in the treatment of diseases. In this work, we concentrated on the preparation of polysaccharide-based nano-biocarriers, commonly used polysaccharides for the preparation of nano-biocarriers, and drugs loaded on polysaccharide-based nano-biocarriers to treat diseases. In the near future, polysaccharide-based nano-biocarriers will be used more and more frequently in drug delivery and disease treatment.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"113 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35582","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoemulsions are tiny mixtures of water and oil stabilized by surfactants, and they have become increasingly popular across various industries, including medicine. With droplet sizes in the nanometer scale, these mixtures are both compact and effective. This discussion explores the potential of polysaccharide-based nanotechnology as an innovative approach to drug delivery. Nanoemulsions offer several benefits, such as enhanced drug solubility and bioavailability, which are crucial for drugs that poorly dissolve in water. The incorporation of natural polysaccharides as emulsifiers in these nanoemulsions ensures their biocompatibility and safety within the body. Additionally, nanoemulsions can facilitate a sustained release of medications, allowing for gradual drug release over an extended period. This controlled release can be achieved through the careful selection and formulation of polysaccharides. This review addresses the methods for producing polysaccharide-based nanoemulsions and examines their physical and chemical properties. It highlights the influence of polysaccharide molecular weight and structure on the stability of nanoemulsions and the effectiveness of drug encapsulation. By understanding these factors, researchers can develop more efficient and safe drug delivery systems utilizing nanoemulsions. Additionally, the present article provides explicit and thorough information about the use of NPLS-based nano-carriers encapsulating a number of drugs designed to treat a variety of conditions, such as diabetes, cancer, HIV, malaria, cardiovascular and respiratory diseases, and skin diseases. For this reason, it is very important to review the most recent developments in polysaccharide-based nano-biocarriers in drug delivery and their application in the treatment of diseases. In this work, we concentrated on the preparation of polysaccharide-based nano-biocarriers, commonly used polysaccharides for the preparation of nano-biocarriers, and drugs loaded on polysaccharide-based nano-biocarriers to treat diseases. In the near future, polysaccharide-based nano-biocarriers will be used more and more frequently in drug delivery and disease treatment.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.