Scott analysis, linear orders, and almost periodic functions

IF 0.8 3区 数学 Q2 MATHEMATICS
David Gonzalez, Matthew Harrison-Trainor, Meng-Che “Turbo” Ho
{"title":"Scott analysis, linear orders, and almost periodic functions","authors":"David Gonzalez,&nbsp;Matthew Harrison-Trainor,&nbsp;Meng-Che “Turbo” Ho","doi":"10.1112/blms.70020","DOIUrl":null,"url":null,"abstract":"<p>Given a countable structure, the Scott complexity measures the difficulty of characterizing the structure up to isomorphism. In this paper, we consider the Scott complexity of linear orders. For any limit ordinal <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math>, we construct a linear order <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>λ</mi>\n </msub>\n <annotation>$L_\\lambda$</annotation>\n </semantics></math> whose Scott complexity is <span></span><math>\n <semantics>\n <msub>\n <mi>Σ</mi>\n <mrow>\n <mi>λ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\Sigma _{\\lambda +1}$</annotation>\n </semantics></math>. This completes the classification of the possible Scott sentence complexities of linear orderings. Previously, there was only one known construction of any structure (of any signature) with Scott complexity <span></span><math>\n <semantics>\n <msub>\n <mi>Σ</mi>\n <mrow>\n <mi>λ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\Sigma _{\\lambda +1}$</annotation>\n </semantics></math>, and our construction gives new examples, for example, rigid structures, of this complexity. Moreover, we can construct the linear orders <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>λ</mi>\n </msub>\n <annotation>$L_\\lambda$</annotation>\n </semantics></math> so that not only does <span></span><math>\n <semantics>\n <msub>\n <mi>L</mi>\n <mi>λ</mi>\n </msub>\n <annotation>$L_\\lambda$</annotation>\n </semantics></math> have Scott complexity <span></span><math>\n <semantics>\n <msub>\n <mi>Σ</mi>\n <mrow>\n <mi>λ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\Sigma _{\\lambda +1}$</annotation>\n </semantics></math>, but there are continuum-many structures <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <msub>\n <mo>≡</mo>\n <mi>λ</mi>\n </msub>\n <msub>\n <mi>L</mi>\n <mi>λ</mi>\n </msub>\n </mrow>\n <annotation>$M \\equiv _\\lambda L_\\lambda$</annotation>\n </semantics></math> and all such structures also have Scott complexity <span></span><math>\n <semantics>\n <msub>\n <mi>Σ</mi>\n <mrow>\n <mi>λ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\Sigma _{\\lambda +1}$</annotation>\n </semantics></math>. In contrast, we demonstrate that there is no structure (of any signature) with Scott complexity <span></span><math>\n <semantics>\n <msub>\n <mi>Π</mi>\n <mrow>\n <mi>λ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\Pi _{\\lambda +1}$</annotation>\n </semantics></math> that is only <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math>-equivalent to structures with Scott complexity <span></span><math>\n <semantics>\n <msub>\n <mi>Π</mi>\n <mrow>\n <mi>λ</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n <annotation>$\\Pi _{\\lambda +1}$</annotation>\n </semantics></math>. Our construction is based on functions <span></span><math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>:</mo>\n <mi>Z</mi>\n <mo>→</mo>\n <mi>N</mi>\n <mo>∪</mo>\n <mo>{</mo>\n <mi>∞</mi>\n <mo>}</mo>\n </mrow>\n <annotation>$f \\colon \\mathbb {Z}\\rightarrow \\mathbb {N}\\cup \\lbrace \\infty \\rbrace$</annotation>\n </semantics></math> that are almost periodic but not periodic, such as those arising from shifts of the <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math>-adic valuations.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1118-1139"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70020","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a countable structure, the Scott complexity measures the difficulty of characterizing the structure up to isomorphism. In this paper, we consider the Scott complexity of linear orders. For any limit ordinal λ $\lambda$ , we construct a linear order L λ $L_\lambda$ whose Scott complexity is Σ λ + 1 $\Sigma _{\lambda +1}$ . This completes the classification of the possible Scott sentence complexities of linear orderings. Previously, there was only one known construction of any structure (of any signature) with Scott complexity Σ λ + 1 $\Sigma _{\lambda +1}$ , and our construction gives new examples, for example, rigid structures, of this complexity. Moreover, we can construct the linear orders L λ $L_\lambda$ so that not only does L λ $L_\lambda$ have Scott complexity Σ λ + 1 $\Sigma _{\lambda +1}$ , but there are continuum-many structures M λ L λ $M \equiv _\lambda L_\lambda$ and all such structures also have Scott complexity Σ λ + 1 $\Sigma _{\lambda +1}$ . In contrast, we demonstrate that there is no structure (of any signature) with Scott complexity Π λ + 1 $\Pi _{\lambda +1}$ that is only λ $\lambda$ -equivalent to structures with Scott complexity Π λ + 1 $\Pi _{\lambda +1}$ . Our construction is based on functions f : Z N { } $f \colon \mathbb {Z}\rightarrow \mathbb {N}\cup \lbrace \infty \rbrace$ that are almost periodic but not periodic, such as those arising from shifts of the p $p$ -adic valuations.

斯科特分析、线性阶数和近周期函数
给定一个可数结构,斯科特复杂度衡量了表征该结构直到同构的难度。在本文中,我们考虑线性阶的斯科特复杂度。对于任意极限序数 λ $\lambda$ ,我们构造了一个线性序 L λ $L_\lambda$ ,其斯科特复杂度为 Σ λ + 1 $\Sigma _{\lambda +1}$ 。这就完成了线性排序的斯科特句子复杂性的分类。在此之前,只有一种已知的结构(任何签名)具有斯科特复杂度 Σ λ + 1 $\Sigma _{\lambda +1}$ ,而我们的结构给出了具有这种复杂度的新例子,例如刚性结构。此外,我们可以构造线性阶 L λ $L_\lambda$,这样不仅 L λ $L_\lambda$具有斯科特复杂度 Σ λ + 1 $\Sigma _\{lambda +1}$ ,而且存在连续多结构 M ≡ λ L λ $M \equiv _\lambda L_\lambda$,所有这些结构也具有斯科特复杂度 Σ λ + 1 $\Sigma _\{lambda +1}$ 。与此相反,我们证明不存在任何斯科特复杂度为 Π λ + 1 $\Pi _{\lambda +1}$ 的结构(任何签名)只与斯科特复杂度为 Π λ + 1 $\Pi _{\lambda +1}$ 的结构等价。我们的构造基于函数 f : Z → N ∪ { ∞ } 。 $f \colon \mathbb {Z}\rightarrow \mathbb {N}\cup \lbrace \infty \rbrace$ 几乎是周期性的,但不是周期性的,例如 p $p$ -adic valations 的移动所产生的函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信