Separability properties of higher rank GBS groups

IF 0.8 3区 数学 Q2 MATHEMATICS
Jone Lopez de Gamiz Zearra, Sam Shepherd
{"title":"Separability properties of higher rank GBS groups","authors":"Jone Lopez de Gamiz Zearra,&nbsp;Sam Shepherd","doi":"10.1112/blms.70024","DOIUrl":null,"url":null,"abstract":"<p>A rank <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> generalized Baumslag–Solitar group is a group that splits as a finite graph of groups such that all vertex and edge groups are isomorphic to <span></span><math>\n <semantics>\n <msup>\n <mi>Z</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {Z}^n$</annotation>\n </semantics></math>. In this paper, we classify these groups in terms of their separability properties. Specifically, we determine when they are residually finite, subgroup separable, and cyclic subgroup separable.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1171-1194"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70024","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A rank n $n$ generalized Baumslag–Solitar group is a group that splits as a finite graph of groups such that all vertex and edge groups are isomorphic to Z n $\mathbb {Z}^n$ . In this paper, we classify these groups in terms of their separability properties. Specifically, we determine when they are residually finite, subgroup separable, and cyclic subgroup separable.

高等级 GBS 群的可分离性
秩n$ n$广义Baumslag-Solitar群是一个群分裂为群的有限图,使得所有顶点群和边群同构于Z n$ \mathbb {Z}^n$。在本文中,我们根据它们的可分性对这些群进行分类。具体地说,我们确定了它们何时是剩余有限的,何时是子群可分的,何时是循环子群可分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信