Afsaneh L. Sanati, André F. Silva, Miguel Maranha, Mahmoud Tavakoli
{"title":"Biphasic Graphene-Oxide Liquid Metal Powder: Synthesis, Characterization, and Application in Energy Storage","authors":"Afsaneh L. Sanati, André F. Silva, Miguel Maranha, Mahmoud Tavakoli","doi":"10.1002/eem2.12890","DOIUrl":null,"url":null,"abstract":"<p>Nanodroplets of Gallium-Based Liquid Metal (LM) have applications in stretchable electronics, electrochemical sensors, energy storage, hyperthermia, and rapid polymerization. The gallium oxide layer around LMNDs prevents aggregation. However, LM nanodroplets (LMNDs) are neither mechanically nor chemically stable. The ultrathin oxide layer ruptures under slight pressure, hindering their use in stretchable electronics. The shell also dissolves in slightly acidic/alkaline solutions, making them unstable for energy storage and electrochemical sensing. We demonstrate the synthesis of a dry LM powder with an LM core and a reduced graphene oxide shell. Graphene oxide provides excellent mechanical and chemical stability and permits electrical conductivity. Its porous structure does not block ion exchange between the LM droplets and the environment, allowing LMNDs to be used in energy storage and electrochemical sensing. The resulting EGaIn powders benefit from higher surface and long-term stability, addressing LMND limitations. We report using GO@EGaIn nanocomposite as an anode for alkali-ion batteries in a novel Ag-EGaIn cell with impressive energy storage capacity. The combination of liquid deformability of LMNDs, higher surface area in the nano form, and the stability of GO@EGaIn dry powder expands the applications of liquid metals in electronics and energy storage.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 3","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12890","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12890","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanodroplets of Gallium-Based Liquid Metal (LM) have applications in stretchable electronics, electrochemical sensors, energy storage, hyperthermia, and rapid polymerization. The gallium oxide layer around LMNDs prevents aggregation. However, LM nanodroplets (LMNDs) are neither mechanically nor chemically stable. The ultrathin oxide layer ruptures under slight pressure, hindering their use in stretchable electronics. The shell also dissolves in slightly acidic/alkaline solutions, making them unstable for energy storage and electrochemical sensing. We demonstrate the synthesis of a dry LM powder with an LM core and a reduced graphene oxide shell. Graphene oxide provides excellent mechanical and chemical stability and permits electrical conductivity. Its porous structure does not block ion exchange between the LM droplets and the environment, allowing LMNDs to be used in energy storage and electrochemical sensing. The resulting EGaIn powders benefit from higher surface and long-term stability, addressing LMND limitations. We report using GO@EGaIn nanocomposite as an anode for alkali-ion batteries in a novel Ag-EGaIn cell with impressive energy storage capacity. The combination of liquid deformability of LMNDs, higher surface area in the nano form, and the stability of GO@EGaIn dry powder expands the applications of liquid metals in electronics and energy storage.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.