Optimizing Hydrogen Direct Injection to Overcome Design Challenges in Jet Ignition Systems

Alberto Boretti
{"title":"Optimizing Hydrogen Direct Injection to Overcome Design Challenges in Jet Ignition Systems","authors":"Alberto Boretti","doi":"10.1002/appl.70011","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Hydrogen direct injection (DI) is a critical technology for advancing internal combustion engines (ICEs) as efficient, low-emission alternatives in a sustainable energy future. While high-pressure direct injection (HPDI) offers significant advantages in efficiency and power density—particularly when paired with jet ignition systems—it remains underdeveloped compared to port fuel injection (PFI) and low-pressure DI (LPDI) systems. This study identifies the limitations of existing HPDI injector designs, including insufficient injection pressures and mass flow rates, and emphasizes the need for single-fuel HPDI systems. A novel method utilizing cryogenic hydrogen warmed to ambient temperature in a constant-volume chamber is proposed to achieve higher injection pressures without added complexity. When integrated with jet ignition, this approach delivers brake thermal efficiencies of up to 50% across diverse operating conditions, far surpassing PFI and LPDI. The findings underscore the urgent need for investment in HPDI technology to unlock the full potential of hydrogen ICEs, enhancing efficiency, power density, and sustainability.</p></div>","PeriodicalId":100109,"journal":{"name":"Applied Research","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/appl.70011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/appl.70011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen direct injection (DI) is a critical technology for advancing internal combustion engines (ICEs) as efficient, low-emission alternatives in a sustainable energy future. While high-pressure direct injection (HPDI) offers significant advantages in efficiency and power density—particularly when paired with jet ignition systems—it remains underdeveloped compared to port fuel injection (PFI) and low-pressure DI (LPDI) systems. This study identifies the limitations of existing HPDI injector designs, including insufficient injection pressures and mass flow rates, and emphasizes the need for single-fuel HPDI systems. A novel method utilizing cryogenic hydrogen warmed to ambient temperature in a constant-volume chamber is proposed to achieve higher injection pressures without added complexity. When integrated with jet ignition, this approach delivers brake thermal efficiencies of up to 50% across diverse operating conditions, far surpassing PFI and LPDI. The findings underscore the urgent need for investment in HPDI technology to unlock the full potential of hydrogen ICEs, enhancing efficiency, power density, and sustainability.

优化氢直接喷射,克服喷气点火系统的设计挑战
氢气直喷(DI)是推动内燃机(ICE)成为可持续能源未来的高效、低排放替代品的关键技术。虽然高压直喷(HPDI)在效率和功率密度方面具有显著优势,特别是与喷射点火系统搭配使用时,但与端口燃料喷射(PFI)和低压直喷(LPDI)系统相比,高压直喷系统的发展仍显不足。本研究指出了现有 HPDI 喷射器设计的局限性,包括喷射压力和质量流量不足,并强调了对单燃料 HPDI 系统的需求。该研究提出了一种新方法,利用在恒容室中加热至环境温度的低温氢气,在不增加复杂性的情况下实现更高的喷射压力。当与喷射点火相结合时,这种方法在各种工作条件下的制动热效率高达 50%,远远超过了 PFI 和 LPDI。研究结果突出表明,迫切需要对 HPDI 技术进行投资,以充分释放氢内燃机的潜力,提高效率、功率密度和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信