Webb's conjecture and generalised Harish-Chandra theory

IF 0.8 3区 数学 Q2 MATHEMATICS
Damiano Rossi
{"title":"Webb's conjecture and generalised Harish-Chandra theory","authors":"Damiano Rossi","doi":"10.1112/blms.70017","DOIUrl":null,"url":null,"abstract":"<p>Webb's conjecture states that the orbit space of the Brown complex of a finite group at any given prime <span></span><math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math> is contractible. This conjecture was proved by Symonds in 1998. In this paper, we suggest a generalisation of Webb's conjecture for finite reductive groups. This is done by associating to each irreducible character a new simplicial complex defined in terms of Deligne–Lusztig theory. We then show that our conjecture follows from a condition, called (<span></span><math>\n <semantics>\n <mi>e</mi>\n <annotation>$e$</annotation>\n </semantics></math>-HC-conj) below, related to generalised Harish-Chandra theory. In particular, using earlier results of the author, we prove our conjecture and recover Symonds result for finite reductive groups under mild restrictions on the prime <span></span><math>\n <semantics>\n <mi>ℓ</mi>\n <annotation>$\\ell$</annotation>\n </semantics></math>. Finally, we show that the condition (<span></span><math>\n <semantics>\n <mi>e</mi>\n <annotation>$e$</annotation>\n </semantics></math>-HC-conj) is implied by the contractibility of the orbit spaces associated to our newly defined complex offering an unexplored topological approach to proving the uniqueness of <span></span><math>\n <semantics>\n <mi>e</mi>\n <annotation>$e$</annotation>\n </semantics></math>-cuspidal pairs up to conjugation.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1083-1092"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70017","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70017","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Webb's conjecture states that the orbit space of the Brown complex of a finite group at any given prime $\ell$ is contractible. This conjecture was proved by Symonds in 1998. In this paper, we suggest a generalisation of Webb's conjecture for finite reductive groups. This is done by associating to each irreducible character a new simplicial complex defined in terms of Deligne–Lusztig theory. We then show that our conjecture follows from a condition, called ( e $e$ -HC-conj) below, related to generalised Harish-Chandra theory. In particular, using earlier results of the author, we prove our conjecture and recover Symonds result for finite reductive groups under mild restrictions on the prime $\ell$ . Finally, we show that the condition ( e $e$ -HC-conj) is implied by the contractibility of the orbit spaces associated to our newly defined complex offering an unexplored topological approach to proving the uniqueness of e $e$ -cuspidal pairs up to conjugation.

韦伯猜想和广义的哈利希-钱德拉理论
韦伯猜想指出在任意给定素数处,有限群的布朗复合体的轨道空间是可收缩的。这个猜想在1998年被西蒙兹证明了。本文给出了有限约化群的韦伯猜想的推广。这是通过将每个不可约的特征关联到一个根据delign - lusztig理论定义的新的简单复合体来实现的。然后,我们证明了我们的猜想是由一个与广义Harish-Chandra理论有关的条件(e$ e$ -HC-conj)推导出来的。特别地,我们利用作者以前的结果,证明了我们的猜想,并在素数$\ell$的温和限制下恢复了有限约群的Symonds结果。最后,我们证明了条件(e$ e$ -HC-conj)是由与我们新定义的复合体相关的轨道空间的可收缩性隐含的,提供了一种未经探索的拓扑方法来证明e$ e$ -尖对直到共轭的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信