Closed G 2 $G_2$ -structures with negative Ricci curvature

IF 0.8 3区 数学 Q2 MATHEMATICS
Alec Payne
{"title":"Closed \n \n \n G\n 2\n \n $G_2$\n -structures with negative Ricci curvature","authors":"Alec Payne","doi":"10.1112/blms.70029","DOIUrl":null,"url":null,"abstract":"<p>We study existence problems for closed <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math>-structures with negative Ricci curvature, and we prove the <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math>-Goldberg conjecture for noncompact manifolds. We first show that no closed manifold admits a closed <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math>-structure with negative Ricci curvature. In the noncompact setting, we show that no complete manifold admits a closed <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math>-structure with Ricci curvature pinched sufficiently close to a negative constant. As a consequence, an Einstein closed <span></span><math>\n <semantics>\n <msub>\n <mi>G</mi>\n <mn>2</mn>\n </msub>\n <annotation>$G_2$</annotation>\n </semantics></math>-structure on a complete manifold must be torsion-free. In addition, when the Einstein metric is incomplete, we find restrictions on lengths of geodesics.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1270-1284"},"PeriodicalIF":0.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70029","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study existence problems for closed G 2 $G_2$ -structures with negative Ricci curvature, and we prove the G 2 $G_2$ -Goldberg conjecture for noncompact manifolds. We first show that no closed manifold admits a closed G 2 $G_2$ -structure with negative Ricci curvature. In the noncompact setting, we show that no complete manifold admits a closed G 2 $G_2$ -structure with Ricci curvature pinched sufficiently close to a negative constant. As a consequence, an Einstein closed G 2 $G_2$ -structure on a complete manifold must be torsion-free. In addition, when the Einstein metric is incomplete, we find restrictions on lengths of geodesics.

负Ricci曲率的封闭g2 $G_2$结构
研究了具有负Ricci曲率的封闭g2 $G_2$ -结构的存在性问题,证明了非紧流形的g2 $G_2$ -Goldberg猜想。首先证明了封闭流形不允许存在负Ricci曲率的封闭g2 $G_2$ -结构。在非紧化情况下,我们证明了没有完全流形允许存在Ricci曲率足够接近负常数的封闭g2 $G_2$ -结构。因此,完全流形上的爱因斯坦闭g2 $G_2$结构必须是无扭的。此外,当爱因斯坦度规不完备时,我们发现测地线长度有限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信