The homological spectrum via definable subcategories

IF 0.8 3区 数学 Q2 MATHEMATICS
Isaac Bird, Jordan Williamson
{"title":"The homological spectrum via definable subcategories","authors":"Isaac Bird,&nbsp;Jordan Williamson","doi":"10.1112/blms.70014","DOIUrl":null,"url":null,"abstract":"<p>We develop an alternative approach to the homological spectrum of a tensor-triangulated category through the lens of definable subcategories. This culminates in a proof that the homological spectrum is homeomorphic to a quotient of the Ziegler spectrum. Along the way, we characterise injective objects in homological residue fields in terms of the definable subcategory corresponding to a given homological prime. We use these results to give a purity perspective on the relationship between the homological and Balmer spectrum.</p>","PeriodicalId":55298,"journal":{"name":"Bulletin of the London Mathematical Society","volume":"57 4","pages":"1040-1064"},"PeriodicalIF":0.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/blms.70014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/blms.70014","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We develop an alternative approach to the homological spectrum of a tensor-triangulated category through the lens of definable subcategories. This culminates in a proof that the homological spectrum is homeomorphic to a quotient of the Ziegler spectrum. Along the way, we characterise injective objects in homological residue fields in terms of the definable subcategory corresponding to a given homological prime. We use these results to give a purity perspective on the relationship between the homological and Balmer spectrum.

Abstract Image

通过可定义的子范畴的同调谱
我们通过可定义子范畴的视角,为张量三角范畴的同调谱开发了另一种方法。最终,我们证明了同调谱与齐格勒谱的商同构。在此过程中,我们根据与给定同素对应的可定义子类,描述了同素残差域中的注入对象。我们利用这些结果从纯粹性的角度探讨了同调谱与巴尔默谱之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
198
审稿时长
4-8 weeks
期刊介绍: Published by Oxford University Press prior to January 2017: http://blms.oxfordjournals.org/
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信