{"title":"Machine Learning Speeds Up the Discovery of Efficient Porphyrinoid Electrocatalysts for Ammonia Synthesis","authors":"Wenfeng Hu, Bingyi Song, Liming Yang","doi":"10.1002/eem2.12888","DOIUrl":null,"url":null,"abstract":"<p>Two-dimensional transition metal porphyrinoid materials (2DTMPoidMats), due to their unique electronic structure and tunable metal active sites, have the potential to enhance interactions with nitrogen molecules and promote the protonation process, making them promising electrochemical nitrogen reduction reaction (eNRR) electrocatalysts. Experimentally screening a large number of catalysts for eNRR catalytic performance would consume considerable time and economic resources. First-principles calculations and machine learning (ML) algorithms could greatly improve the efficiency of catalyst screening. Using this approach, we selected 86 candidates capable of catalyzing eNRR from 1290 types of 2DTMPoidMats, and verified the results with density functional theory (DFT) computations. Analysis of the full reaction pathway shows that MoPp-meso-F-β-Py, MoPp-β-Cl-meso-Diyne, MoPp-meso-Ethinyl, and WPp-β-Pz exhibit the best catalytic performance with the onset potential of −0.22, −0.19, −0.23, and −0.35 V, respectively. This work provides valuable insights into efficient design and screening of eNRR catalysts and promotes the application of ML algorithmic models in the field of catalysis.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 3","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12888","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12888","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Two-dimensional transition metal porphyrinoid materials (2DTMPoidMats), due to their unique electronic structure and tunable metal active sites, have the potential to enhance interactions with nitrogen molecules and promote the protonation process, making them promising electrochemical nitrogen reduction reaction (eNRR) electrocatalysts. Experimentally screening a large number of catalysts for eNRR catalytic performance would consume considerable time and economic resources. First-principles calculations and machine learning (ML) algorithms could greatly improve the efficiency of catalyst screening. Using this approach, we selected 86 candidates capable of catalyzing eNRR from 1290 types of 2DTMPoidMats, and verified the results with density functional theory (DFT) computations. Analysis of the full reaction pathway shows that MoPp-meso-F-β-Py, MoPp-β-Cl-meso-Diyne, MoPp-meso-Ethinyl, and WPp-β-Pz exhibit the best catalytic performance with the onset potential of −0.22, −0.19, −0.23, and −0.35 V, respectively. This work provides valuable insights into efficient design and screening of eNRR catalysts and promotes the application of ML algorithmic models in the field of catalysis.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.