Sitaramanjaneya Mouli Thalluri, Jhonatan Rodriguez-Pereira, Jan Michalicka, Eva Kolíbalová, Ludek Hromadko, Stanislav Slang, Miloslav Pouzar, Hanna Sopha, Raul Zazpe, Jan M. Macak
{"title":"Enhancing Alkaline Hydrogen Evolution Reaction on Ru-Decorated TiO2 Nanotube Layers: Synergistic Role of Ti3+, Ru Single Atoms, and Ru Nanoparticles","authors":"Sitaramanjaneya Mouli Thalluri, Jhonatan Rodriguez-Pereira, Jan Michalicka, Eva Kolíbalová, Ludek Hromadko, Stanislav Slang, Miloslav Pouzar, Hanna Sopha, Raul Zazpe, Jan M. Macak","doi":"10.1002/eem2.12864","DOIUrl":null,"url":null,"abstract":"<p>Synergistic interplays involving multiple active centers originating from TiO<sub>2</sub> nanotube layers (TNT) and ruthenium (Ru) species comprising of both single atoms (SAs) and nanoparticles (NPs) augment the alkaline hydrogen evolution reaction (HER) by enhancing Volmer kinetics from rapid water dissociation and improving Tafel kinetics from efficient H* desorption. Atomic layer deposition of Ru with 50 process cycles results in a mixture of Ru SAs and 2.8 ± 0.4 nm NPs present on TNT layers, and it emerges with the highest HER activity among all the electrodes synthesized. A detailed study of the Ti and Ru species using different high-resolution techniques confirmed the presence of Ti<sup>3+</sup> states and the coexistence of Ru SAs and NPs. With insights from literature, the role of Ti<sup>3+</sup>, appropriate work functions of TNT layers and Ru, and the synergistic effect of Ru SAs and Ru NPs in improving the performance of alkaline HER were elaborated and justified. The aforementioned characteristics led to a remarkable performance by having 9 mV onset potentials and 33 mV dec<sup>−1</sup> of Tafel slopes and a higher turnover frequency of 1.72 H<sub>2</sub> s<sup>−1</sup> at 30 mV. Besides, a notable stability from 28 h staircase chronopotentiometric measurements for TNT@Ru surpasses TNT@Pt in comparison.</p>","PeriodicalId":11554,"journal":{"name":"Energy & Environmental Materials","volume":"8 3","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eem2.12864","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eem2.12864","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synergistic interplays involving multiple active centers originating from TiO2 nanotube layers (TNT) and ruthenium (Ru) species comprising of both single atoms (SAs) and nanoparticles (NPs) augment the alkaline hydrogen evolution reaction (HER) by enhancing Volmer kinetics from rapid water dissociation and improving Tafel kinetics from efficient H* desorption. Atomic layer deposition of Ru with 50 process cycles results in a mixture of Ru SAs and 2.8 ± 0.4 nm NPs present on TNT layers, and it emerges with the highest HER activity among all the electrodes synthesized. A detailed study of the Ti and Ru species using different high-resolution techniques confirmed the presence of Ti3+ states and the coexistence of Ru SAs and NPs. With insights from literature, the role of Ti3+, appropriate work functions of TNT layers and Ru, and the synergistic effect of Ru SAs and Ru NPs in improving the performance of alkaline HER were elaborated and justified. The aforementioned characteristics led to a remarkable performance by having 9 mV onset potentials and 33 mV dec−1 of Tafel slopes and a higher turnover frequency of 1.72 H2 s−1 at 30 mV. Besides, a notable stability from 28 h staircase chronopotentiometric measurements for TNT@Ru surpasses TNT@Pt in comparison.
期刊介绍:
Energy & Environmental Materials (EEM) is an international journal published by Zhengzhou University in collaboration with John Wiley & Sons, Inc. The journal aims to publish high quality research related to materials for energy harvesting, conversion, storage, and transport, as well as for creating a cleaner environment. EEM welcomes research work of significant general interest that has a high impact on society-relevant technological advances. The scope of the journal is intentionally broad, recognizing the complexity of issues and challenges related to energy and environmental materials. Therefore, interdisciplinary work across basic science and engineering disciplines is particularly encouraged. The areas covered by the journal include, but are not limited to, materials and composites for photovoltaics and photoelectrochemistry, bioprocessing, batteries, fuel cells, supercapacitors, clean air, and devices with multifunctionality. The readership of the journal includes chemical, physical, biological, materials, and environmental scientists and engineers from academia, industry, and policy-making.