Robert A. Seymour, Gina Rippon, Gerard Gooding-Williams, Hongfang Wang, Klaus Kessler
{"title":"The Neural Oscillatory Basis of Perspective-Taking in Autistic and Non-Autistic Adolescents Using Magnetoencephalography","authors":"Robert A. Seymour, Gina Rippon, Gerard Gooding-Williams, Hongfang Wang, Klaus Kessler","doi":"10.1111/ejn.70109","DOIUrl":null,"url":null,"abstract":"<p>Taking another's perspective is a high-level mental skill underlying many aspects of social cognition. Perspective-taking is usually an embodied egocentric process whereby people mentally rotate themselves away from their physical location into the other's orientation. This is accompanied by increased theta-band (3–7 Hz) brain oscillations within a widespread fronto-parietal cortical network including the temporoparietal junction. Individuals with autism spectrum conditions (ASC) have been reported to experience challenges with high-level perspective-taking, particularly when adopting embodied strategies. To investigate the potential neurophysiological basis of these autism-related individual differences, we used magnetoencephalography in combination with a well-replicated perspective-taking paradigm in a group of 18 autistic and 17 age-matched non-autistic adolescents. Findings revealed that increasing the angle between self and other perspective resulted in prolonged reaction times for the autistic group during perspective-taking. This was accompanied by reduced theta power across a wide network of regions typically active during social cognitive tasks. On the other hand, the autistic group showed greater alpha power decreases in visual cortex compared with the non-autistic group across all perspective-taking conditions. These divergent theta and alpha power effects, coupled with steeper response time slopes, suggest that autistic individuals may rely more on alternative cognitive strategies, such as mental object rotation, rather than an egocentric embodied approach. Finally, no group differences were found when participants were asked to track, rather than take, another's viewpoint, suggesting that autism-related individual differences are specific to high-level perspective-taking.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 8","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70109","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70109","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Taking another's perspective is a high-level mental skill underlying many aspects of social cognition. Perspective-taking is usually an embodied egocentric process whereby people mentally rotate themselves away from their physical location into the other's orientation. This is accompanied by increased theta-band (3–7 Hz) brain oscillations within a widespread fronto-parietal cortical network including the temporoparietal junction. Individuals with autism spectrum conditions (ASC) have been reported to experience challenges with high-level perspective-taking, particularly when adopting embodied strategies. To investigate the potential neurophysiological basis of these autism-related individual differences, we used magnetoencephalography in combination with a well-replicated perspective-taking paradigm in a group of 18 autistic and 17 age-matched non-autistic adolescents. Findings revealed that increasing the angle between self and other perspective resulted in prolonged reaction times for the autistic group during perspective-taking. This was accompanied by reduced theta power across a wide network of regions typically active during social cognitive tasks. On the other hand, the autistic group showed greater alpha power decreases in visual cortex compared with the non-autistic group across all perspective-taking conditions. These divergent theta and alpha power effects, coupled with steeper response time slopes, suggest that autistic individuals may rely more on alternative cognitive strategies, such as mental object rotation, rather than an egocentric embodied approach. Finally, no group differences were found when participants were asked to track, rather than take, another's viewpoint, suggesting that autism-related individual differences are specific to high-level perspective-taking.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.