Hybrid optimizing optoelectronic properties: structural analysis of silicon and germanium-modified PCPDTBT polymers

IF 4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Amel Azazi
{"title":"Hybrid optimizing optoelectronic properties: structural analysis of silicon and germanium-modified PCPDTBT polymers","authors":"Amel Azazi","doi":"10.1007/s11082-025-08127-x","DOIUrl":null,"url":null,"abstract":"<div><p>The molecular structure and optoelectronic characteristics of PCPDTBT polymers modified with silicon (PSBTBT) and germanium (PGeDTBT) substituents were investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT) computational methods. The results demonstrate that incorporating inorganic elements such as silicon or germanium into the polymer backbone significantly enhances structural, electronic, and optical properties. When silicon and germanium are added, the bridge length increases (1.453858 Å for PSBTBT and 1.453544 Å for PGeDTBT compared to 1.452408 Å for PCPDTBT). This structural modification enhances chain rigidity and improves intramolecular charge transfer (D<sub>CT</sub> PGeDTBT &gt; D<sub>CT</sub> PCPTBT &gt; D<sub>CT</sub> PSBTBT), promoting greater electron mobility. The bandgap energies increase slightly to 1.71 eV for PSBTBT and 1.70 eV for PGeDTBT, up from 1.62 eV for PCPDTBT, facilitating broader absorption in the visible spectrum. Optical analysis reveals that PSBTBT and PGeDTBT exhibit two main absorption peaks: 300 nm and 682 nm for PSBTBT and 325 nm and 715 nm for PGeDTBT, while the maximum absorption peak of PCPDTBT is located at 758 nm. The exciton binding energy (EB) also increases, from 0.32 eV for PCPDTBT to 0.38 eV for PSBTBT and 0.41 eV for PGeDTBT resulting in more efficient charge separation. These enhancements, along with higher open-circuit voltages (1.29 eV for PSBTBT and 1.26 eV for PGeDTBT compared to 1.22 eV for PCPDTBT), make these hybrid polymers promising candidates for organic photovoltaic applications. The findings provide valuable insights into structure–property relationships of novel organic–inorganic hybrid materials, paying the way for advancements in organic photovoltaic technology.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08127-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The molecular structure and optoelectronic characteristics of PCPDTBT polymers modified with silicon (PSBTBT) and germanium (PGeDTBT) substituents were investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT) computational methods. The results demonstrate that incorporating inorganic elements such as silicon or germanium into the polymer backbone significantly enhances structural, electronic, and optical properties. When silicon and germanium are added, the bridge length increases (1.453858 Å for PSBTBT and 1.453544 Å for PGeDTBT compared to 1.452408 Å for PCPDTBT). This structural modification enhances chain rigidity and improves intramolecular charge transfer (DCT PGeDTBT > DCT PCPTBT > DCT PSBTBT), promoting greater electron mobility. The bandgap energies increase slightly to 1.71 eV for PSBTBT and 1.70 eV for PGeDTBT, up from 1.62 eV for PCPDTBT, facilitating broader absorption in the visible spectrum. Optical analysis reveals that PSBTBT and PGeDTBT exhibit two main absorption peaks: 300 nm and 682 nm for PSBTBT and 325 nm and 715 nm for PGeDTBT, while the maximum absorption peak of PCPDTBT is located at 758 nm. The exciton binding energy (EB) also increases, from 0.32 eV for PCPDTBT to 0.38 eV for PSBTBT and 0.41 eV for PGeDTBT resulting in more efficient charge separation. These enhancements, along with higher open-circuit voltages (1.29 eV for PSBTBT and 1.26 eV for PGeDTBT compared to 1.22 eV for PCPDTBT), make these hybrid polymers promising candidates for organic photovoltaic applications. The findings provide valuable insights into structure–property relationships of novel organic–inorganic hybrid materials, paying the way for advancements in organic photovoltaic technology.

Graphical abstract

混合优化光电特性:硅和锗改性 PCPDTBT 聚合物的结构分析
利用密度泛函理论(DFT)和时变 DFT(TD-DFT)计算方法,研究了用硅(PSBTBT)和锗(PGeDTBT)取代基修饰的 PCPDTBT 聚合物的分子结构和光电特性。研究结果表明,在聚合物骨架中加入硅或锗等无机元素可显著增强聚合物的结构、电子和光学特性。加入硅和锗后,桥长增加(PSBTBT 为 1.453858 Å,PGeDTBT 为 1.453544 Å,而 PCPDTBT 为 1.452408 Å)。这种结构修饰增强了链的刚性,改善了分子内电荷转移(DCT PGeDTBT > DCT PCPTBT > DCT PSBTBT),提高了电子迁移率。PSBTBT 和 PGeDTBT 的带隙能分别从 PCPDTBT 的 1.62 eV 微升至 1.71 eV 和 1.70 eV,从而促进了在可见光谱中更广泛的吸收。光学分析表明,PSBTBT 和 PGeDTBT 有两个主要吸收峰:PSBTBT 为 300 纳米和 682 纳米,PGeDTBT 为 325 纳米和 715 纳米,而 PCPDTBT 的最大吸收峰位于 758 纳米。激子结合能(EB)也从 PCPDTBT 的 0.32 eV 提高到 PSBTBT 的 0.38 eV 和 PGeDTBT 的 0.41 eV,从而提高了电荷分离的效率。这些增强效应以及更高的开路电压(PSBTBT 为 1.29 eV,PGeDTBT 为 1.26 eV,而 PCPDTBT 为 1.22 eV)使这些杂化聚合物有望成为有机光伏应用的候选材料。这些发现为新型有机-无机杂化材料的结构-性能关系提供了宝贵的见解,为有机光伏技术的进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optical and Quantum Electronics
Optical and Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.60
自引率
20.00%
发文量
810
审稿时长
3.8 months
期刊介绍: Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest. Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信