{"title":"A ratiometric ionic liquids-based micro-optode for instant and specific detection of nerve agent analog","authors":"Najmin Tohora, Sabbir Ahamed, Jyoti Chourasia, Upika Darnal, Subekchha Pradhan, Shraddha Rai, Shubham Lama, Sudhir Kumar Das","doi":"10.1007/s00604-025-07153-6","DOIUrl":null,"url":null,"abstract":"<div><p>Designing advanced photofunctional materials within the core of ionic liquids (ILs) has stimulated considerable attention within the scientific communities due to their impactful significance and physicochemical properties such as ionic nature, low melting point, non-volatility, and tunability without hampering their inherent photofunctionality. Herein, we have synthesized a photoluminescent IL, <b>HTIL</b> from 8-hydroxy pyrene-1,3,6-trisulfonic acid trisodium salt [HPTS] and trihexyltetradecylphosphonium chloride ([TTP]Cl) by simple ionic exchange reaction. Water-dispersible IL-based low-dimensional materials referred to as <b>nHTIL</b> were developed by a reprecipitation technique and validated using various spectroscopic and microscopic analyses methods. We have successfully demonstrated that neat <b>HTIL</b> could be used as a solvent-free fluorescent ink and checked its superiority as a security writing tool. A ratiometric cyanish to bluish fluorometric change is observed upon the addition of diethylchlorophosphate (DCP), a sarin mimic in the solution having detection and quantification limits within the µM range. Also, a portable and super handy paper-based test kit experiment has been illustrated and performed verifying DCP detection in the solid phase. A vapor strip–based experiment by <b>nHTIL</b> was conducted to explore the vapor phase detection of DCP. This report presents an innovative way to develop DCP-sensitive IL-based low-dimensional materials exhibiting remarkable properties compared to traditional ones for forensic and environmental monitoring.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 5","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07153-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Designing advanced photofunctional materials within the core of ionic liquids (ILs) has stimulated considerable attention within the scientific communities due to their impactful significance and physicochemical properties such as ionic nature, low melting point, non-volatility, and tunability without hampering their inherent photofunctionality. Herein, we have synthesized a photoluminescent IL, HTIL from 8-hydroxy pyrene-1,3,6-trisulfonic acid trisodium salt [HPTS] and trihexyltetradecylphosphonium chloride ([TTP]Cl) by simple ionic exchange reaction. Water-dispersible IL-based low-dimensional materials referred to as nHTIL were developed by a reprecipitation technique and validated using various spectroscopic and microscopic analyses methods. We have successfully demonstrated that neat HTIL could be used as a solvent-free fluorescent ink and checked its superiority as a security writing tool. A ratiometric cyanish to bluish fluorometric change is observed upon the addition of diethylchlorophosphate (DCP), a sarin mimic in the solution having detection and quantification limits within the µM range. Also, a portable and super handy paper-based test kit experiment has been illustrated and performed verifying DCP detection in the solid phase. A vapor strip–based experiment by nHTIL was conducted to explore the vapor phase detection of DCP. This report presents an innovative way to develop DCP-sensitive IL-based low-dimensional materials exhibiting remarkable properties compared to traditional ones for forensic and environmental monitoring.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.