{"title":"Estimating the characteristic strength values of unidirectional engineered bamboo laminates and cross-laminated bamboo panels","authors":"Rui Wang, Zhi Li, Yao Wu, Mingkang Xia, Qian Wang","doi":"10.1007/s00107-025-02203-5","DOIUrl":null,"url":null,"abstract":"<div><p>Based on the geometrical characteristics of thick-strip engineered bamboo panels, the experimental methods in accordance with current testing standards are proposed in this research. The strength values of structural used engineered bamboo panels under various loading conditions are reported in terms of tension, compression, bending, and shear. The average stress-displacement curves of panels with different thicknesses are given and compared in this study. The k-sample Anderson–Darling (ADK) test was used to statistically analyze the effect of thickness on three batches of strength values, and the test results indicated that the three groups of data were drawn from different populations, demonstrating that the thickness significantly affects the material properties of bamboo panels. Using the original test data obtained, strength values and the corresponding coefficient of variation (COV) were calculated and compared. Probability plots of the strength values indicate that the distribution can be described as a normal distribution variable with a 95% level of confidence. Based on the test information obtained from different small specimen numbers, ranging from 5 to 60, the characteristic strength values of the structural used bamboo panels are estimated according to the design-by-test approach. Additionally, the compressive performance and corresponding characteristic load-bearing capacity of cross-laminated-bamboo (CLB) based on the engineered bamboo boards are also investigated in this research.</p></div>","PeriodicalId":550,"journal":{"name":"European Journal of Wood and Wood Products","volume":"83 2","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Wood and Wood Products","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s00107-025-02203-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the geometrical characteristics of thick-strip engineered bamboo panels, the experimental methods in accordance with current testing standards are proposed in this research. The strength values of structural used engineered bamboo panels under various loading conditions are reported in terms of tension, compression, bending, and shear. The average stress-displacement curves of panels with different thicknesses are given and compared in this study. The k-sample Anderson–Darling (ADK) test was used to statistically analyze the effect of thickness on three batches of strength values, and the test results indicated that the three groups of data were drawn from different populations, demonstrating that the thickness significantly affects the material properties of bamboo panels. Using the original test data obtained, strength values and the corresponding coefficient of variation (COV) were calculated and compared. Probability plots of the strength values indicate that the distribution can be described as a normal distribution variable with a 95% level of confidence. Based on the test information obtained from different small specimen numbers, ranging from 5 to 60, the characteristic strength values of the structural used bamboo panels are estimated according to the design-by-test approach. Additionally, the compressive performance and corresponding characteristic load-bearing capacity of cross-laminated-bamboo (CLB) based on the engineered bamboo boards are also investigated in this research.
期刊介绍:
European Journal of Wood and Wood Products reports on original research and new developments in the field of wood and wood products and their biological, chemical, physical as well as mechanical and technological properties, processes and uses. Subjects range from roundwood to wood based products, composite materials and structural applications, with related jointing techniques. Moreover, it deals with wood as a chemical raw material, source of energy as well as with inter-disciplinary aspects of environmental assessment and international markets.
European Journal of Wood and Wood Products aims at promoting international scientific communication and transfer of new technologies from research into practice.