Identifying anomalous welding in the bud: A forecasting approach

IF 2.4 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Rundong Lu, Ming Lou, Yujun Xia, Yongbing Li
{"title":"Identifying anomalous welding in the bud: A forecasting approach","authors":"Rundong Lu,&nbsp;Ming Lou,&nbsp;Yujun Xia,&nbsp;Yongbing Li","doi":"10.1007/s40194-025-01994-8","DOIUrl":null,"url":null,"abstract":"<div><p>To forecast anomalous welding processes, we propose a novel two-stage framework that integrates generative models and adversarial learning techniques for predicting anomalies in molten pool behavior. In the first stage, the goal is to generate molten pool videos (MPVs) for future welding operations by sequentially predicting molten pool frames under consistent welding parameters. The second stage uses one-class classification on the generated molten pool images to detect anomalies. This is done by maximizing the discrepancy between outliers (anomalies) and inliers (normal behavior) while minimizing the variation within the inliers. By leveraging the generative error introduced by spatiotemporal prediction, the framework enhances the separability between normal inliers and anomalous outliers. The proposed framework was evaluated by identifying anomalies in a variety of weld seams. Our results demonstrate that the framework successfully forecasts welding anomalies on real-world MPV datasets, highlighting its potential for practical applications in defect detection and process control.</p></div>","PeriodicalId":809,"journal":{"name":"Welding in the World","volume":"69 5","pages":"1335 - 1347"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Welding in the World","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40194-025-01994-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

To forecast anomalous welding processes, we propose a novel two-stage framework that integrates generative models and adversarial learning techniques for predicting anomalies in molten pool behavior. In the first stage, the goal is to generate molten pool videos (MPVs) for future welding operations by sequentially predicting molten pool frames under consistent welding parameters. The second stage uses one-class classification on the generated molten pool images to detect anomalies. This is done by maximizing the discrepancy between outliers (anomalies) and inliers (normal behavior) while minimizing the variation within the inliers. By leveraging the generative error introduced by spatiotemporal prediction, the framework enhances the separability between normal inliers and anomalous outliers. The proposed framework was evaluated by identifying anomalies in a variety of weld seams. Our results demonstrate that the framework successfully forecasts welding anomalies on real-world MPV datasets, highlighting its potential for practical applications in defect detection and process control.

在萌芽阶段识别异常焊接:一种预测方法
为了预测异常焊接过程,我们提出了一个新的两阶段框架,该框架集成了生成模型和对抗性学习技术,用于预测熔池行为的异常。在第一阶段,目标是通过顺序预测一致焊接参数下的熔池框架,为未来的焊接操作生成熔池视频(mpv)。第二阶段对生成的熔池图像进行一类分类,检测异常。这是通过最大化异常值(异常)和内线(正常行为)之间的差异,同时最小化内线内的变化来实现的。通过利用时空预测引入的生成误差,该框架增强了正常内线和异常离群点之间的可分离性。通过识别各种焊缝中的异常,对所提出的框架进行了评估。我们的研究结果表明,该框架成功地预测了实际MPV数据集上的焊接异常,突出了其在缺陷检测和过程控制方面的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Welding in the World
Welding in the World METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
4.20
自引率
14.30%
发文量
181
审稿时长
6-12 weeks
期刊介绍: The journal Welding in the World publishes authoritative papers on every aspect of materials joining, including welding, brazing, soldering, cutting, thermal spraying and allied joining and fabrication techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信