{"title":"Microwave Synthesis of Ag@MoS2 in NADES medium for the Dispersive Micro Solid Phase Extraction of Atrazine in environmental samples","authors":"Furkan Uzcan, Mustafa Soylak","doi":"10.1007/s11270-025-07991-3","DOIUrl":null,"url":null,"abstract":"<div><p>A simple-to-operate, environmentally friendly method has been developed for novel Ag sphere synthesis in NADES media to achieve spherical form and for green synthesis that was modified with MoS<sub>2</sub> nanoparticles. Ag@MoS<sub>2</sub> was designed as an adsorbent for a rapid and economical dispersive micro solid phase extraction approach at trace levels. The Analytical parameters pH (5.0), sorbent mass (10 mg), extraction time (2.5 min), eluent volume (5 mL), eluent type (acetonitrile), and sample volume (10 mL) were optimized. The detection limit was found to be 0.6 μg L<sup>–1</sup> and the technique’s linearity ranged from 2.1 to 250 μg L<sup>–1</sup>. The suggested approach has several benefits, including selectivity, precision, and rapidity. It is used practically to identify ATZ in lake water, fish farming water, tap water, allspice and rosehip. The ATZ recovery was sufficient, averaging between 91 and 107%. The method had an overall score of 0.57 on the AGREE scale.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 6","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11270-025-07991-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-025-07991-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A simple-to-operate, environmentally friendly method has been developed for novel Ag sphere synthesis in NADES media to achieve spherical form and for green synthesis that was modified with MoS2 nanoparticles. Ag@MoS2 was designed as an adsorbent for a rapid and economical dispersive micro solid phase extraction approach at trace levels. The Analytical parameters pH (5.0), sorbent mass (10 mg), extraction time (2.5 min), eluent volume (5 mL), eluent type (acetonitrile), and sample volume (10 mL) were optimized. The detection limit was found to be 0.6 μg L–1 and the technique’s linearity ranged from 2.1 to 250 μg L–1. The suggested approach has several benefits, including selectivity, precision, and rapidity. It is used practically to identify ATZ in lake water, fish farming water, tap water, allspice and rosehip. The ATZ recovery was sufficient, averaging between 91 and 107%. The method had an overall score of 0.57 on the AGREE scale.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.