Integrating Calphad and finite volume method for predicting non-equilibrium solidification of lithium metasilicate

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Haojie Li, Sanchita Chakrabarty, Vishnuvardhan Naidu Tanga, Marco Mancini, Michael Fischlschweiger
{"title":"Integrating Calphad and finite volume method for predicting non-equilibrium solidification of lithium metasilicate","authors":"Haojie Li,&nbsp;Sanchita Chakrabarty,&nbsp;Vishnuvardhan Naidu Tanga,&nbsp;Marco Mancini,&nbsp;Michael Fischlschweiger","doi":"10.1007/s11705-025-2543-4","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient recycling of lithium metasilicate (Li<sub>2</sub>SiO<sub>3</sub>) from lithium-containing slag via a pyrometallurgical route demands a comprehensive understanding of its solidification process in the slag reactor. A simulation framework is developed to predict the heterogeneous phase distribution of Li<sub>2</sub>SiO<sub>3</sub>, the temperature and velocity fields considering density changes in the solidifying melt, on the apparatus scale. This framework integrates thermodynamic models via calculation of phase diagrams with the enthalpy-porosity technique and the volume of fluid method within a finite volume approach, ensuring thermodynamic consistency and adherence to mass balance. Thus, the formation of Li<sub>2</sub>SiO<sub>3</sub> from the liquid slag composed of Li<sub>2</sub>O-SiO<sub>2</sub> is described in space and temporal fields. Thereby, the interrelationship between the temperature field, enthalpy field, velocity field, and phase distribution of Li<sub>2</sub>SiO<sub>3</sub> is revealed. It is shown that the lower temperature on reactor boundaries prompts the earlier formation of Li<sub>2</sub>SiO<sub>3</sub> in the vicinity of the boundaries, which subsequently induces a downward flow due to the higher density of Li<sub>2</sub>SiO<sub>3</sub>. The predicted global mass fraction of Li<sub>2</sub>SiO<sub>3</sub> under non-equilibrium conditions is 11.5 wt % lower than that calculated using the global equilibrium assumption. This demonstrates the global non-equilibrium behavior on the process scale and its consequences on slag solidification.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11705-025-2543-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2543-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient recycling of lithium metasilicate (Li2SiO3) from lithium-containing slag via a pyrometallurgical route demands a comprehensive understanding of its solidification process in the slag reactor. A simulation framework is developed to predict the heterogeneous phase distribution of Li2SiO3, the temperature and velocity fields considering density changes in the solidifying melt, on the apparatus scale. This framework integrates thermodynamic models via calculation of phase diagrams with the enthalpy-porosity technique and the volume of fluid method within a finite volume approach, ensuring thermodynamic consistency and adherence to mass balance. Thus, the formation of Li2SiO3 from the liquid slag composed of Li2O-SiO2 is described in space and temporal fields. Thereby, the interrelationship between the temperature field, enthalpy field, velocity field, and phase distribution of Li2SiO3 is revealed. It is shown that the lower temperature on reactor boundaries prompts the earlier formation of Li2SiO3 in the vicinity of the boundaries, which subsequently induces a downward flow due to the higher density of Li2SiO3. The predicted global mass fraction of Li2SiO3 under non-equilibrium conditions is 11.5 wt % lower than that calculated using the global equilibrium assumption. This demonstrates the global non-equilibrium behavior on the process scale and its consequences on slag solidification.

集成calphhad和有限体积法预测偏硅酸锂非平衡凝固
通过火法冶炼从含锂渣中高效回收偏硅酸锂(Li2SiO3),需要对其在渣堆中的凝固过程有全面的了解。建立了一个模拟框架,用于在设备尺度上预测Li2SiO3的非均相分布,以及考虑密度变化的凝固熔体温度场和速度场。该框架通过计算相图、焓-孔隙度技术和流体体积法,在有限体积方法中集成了热力学模型,确保了热力学一致性和质量平衡。由此,从时空场描述了Li2SiO3由Li2O-SiO2组成的液渣形成的过程。从而揭示了Li2SiO3的温度场、焓场、速度场和相分布之间的相互关系。结果表明,反应器边界温度越低,边界附近Li2SiO3的形成越早,Li2SiO3的密度越高,Li2SiO3的形成越早。在非平衡条件下预测的Li2SiO3的整体质量分数比使用整体平衡假设计算的结果低11.5%。这表明了过程尺度上的整体非平衡行为及其对渣凝固的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信