Haojie Li, Sanchita Chakrabarty, Vishnuvardhan Naidu Tanga, Marco Mancini, Michael Fischlschweiger
{"title":"Integrating Calphad and finite volume method for predicting non-equilibrium solidification of lithium metasilicate","authors":"Haojie Li, Sanchita Chakrabarty, Vishnuvardhan Naidu Tanga, Marco Mancini, Michael Fischlschweiger","doi":"10.1007/s11705-025-2543-4","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient recycling of lithium metasilicate (Li<sub>2</sub>SiO<sub>3</sub>) from lithium-containing slag via a pyrometallurgical route demands a comprehensive understanding of its solidification process in the slag reactor. A simulation framework is developed to predict the heterogeneous phase distribution of Li<sub>2</sub>SiO<sub>3</sub>, the temperature and velocity fields considering density changes in the solidifying melt, on the apparatus scale. This framework integrates thermodynamic models via calculation of phase diagrams with the enthalpy-porosity technique and the volume of fluid method within a finite volume approach, ensuring thermodynamic consistency and adherence to mass balance. Thus, the formation of Li<sub>2</sub>SiO<sub>3</sub> from the liquid slag composed of Li<sub>2</sub>O-SiO<sub>2</sub> is described in space and temporal fields. Thereby, the interrelationship between the temperature field, enthalpy field, velocity field, and phase distribution of Li<sub>2</sub>SiO<sub>3</sub> is revealed. It is shown that the lower temperature on reactor boundaries prompts the earlier formation of Li<sub>2</sub>SiO<sub>3</sub> in the vicinity of the boundaries, which subsequently induces a downward flow due to the higher density of Li<sub>2</sub>SiO<sub>3</sub>. The predicted global mass fraction of Li<sub>2</sub>SiO<sub>3</sub> under non-equilibrium conditions is 11.5 wt % lower than that calculated using the global equilibrium assumption. This demonstrates the global non-equilibrium behavior on the process scale and its consequences on slag solidification.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 5","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11705-025-2543-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2543-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient recycling of lithium metasilicate (Li2SiO3) from lithium-containing slag via a pyrometallurgical route demands a comprehensive understanding of its solidification process in the slag reactor. A simulation framework is developed to predict the heterogeneous phase distribution of Li2SiO3, the temperature and velocity fields considering density changes in the solidifying melt, on the apparatus scale. This framework integrates thermodynamic models via calculation of phase diagrams with the enthalpy-porosity technique and the volume of fluid method within a finite volume approach, ensuring thermodynamic consistency and adherence to mass balance. Thus, the formation of Li2SiO3 from the liquid slag composed of Li2O-SiO2 is described in space and temporal fields. Thereby, the interrelationship between the temperature field, enthalpy field, velocity field, and phase distribution of Li2SiO3 is revealed. It is shown that the lower temperature on reactor boundaries prompts the earlier formation of Li2SiO3 in the vicinity of the boundaries, which subsequently induces a downward flow due to the higher density of Li2SiO3. The predicted global mass fraction of Li2SiO3 under non-equilibrium conditions is 11.5 wt % lower than that calculated using the global equilibrium assumption. This demonstrates the global non-equilibrium behavior on the process scale and its consequences on slag solidification.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.