Dropout Kolmogorov–Arnold Networks: A Novel Data-Driven Impedance Modeling Approach for Voltage-Source Converters

IF 5 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Moetasem Ali;Yasser Abdel-Rady I. Mohamed
{"title":"Dropout Kolmogorov–Arnold Networks: A Novel Data-Driven Impedance Modeling Approach for Voltage-Source Converters","authors":"Moetasem Ali;Yasser Abdel-Rady I. Mohamed","doi":"10.1109/OJPEL.2025.3556430","DOIUrl":null,"url":null,"abstract":"The extensive integration of voltage-source converters (VSCs) as interfaces for renewable energy sources in power systems increases stability concerns and demands accurate VSC impedance models to characterize grid-converter interactions at various operating points. However, analytical impedance models require detailed knowledge of the VSC parameters, which are frequently inaccessible due to manufacturer confidentiality. Further, existing neural network data-driven VSC impedance identification methods adopt conventional multi-layer perceptrons, yielding complex models and demanding abundant high-quality data. This paper presents a data-driven VSC impedance identification method using Dropout Kolmogorov-Arnold Networks (DropKANs) to address these challenges effectively. The hyperparameters of the proposed DropKAN model are optimized using Optuna, outperforming the Scikit-learn, Hyperopt, and GPyOpt optimizers, and the training is optimized using the Adam optimizer and compared with Nadam and RMSprop. Comprehensive and comparative evaluation tests showed 1) the superiority of the proposed DropKAN model over the feedforward neural network, long short-term memory, and KAN models in terms of accuracy, training and prediction times, and neural network structure simplicity, even with a 50% reduction in the training data size, and 2) the versatility and robustness of the proposed DropKAN model when applied to a different VSC system.","PeriodicalId":93182,"journal":{"name":"IEEE open journal of power electronics","volume":"6 ","pages":"562-582"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10946167","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of power electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10946167/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The extensive integration of voltage-source converters (VSCs) as interfaces for renewable energy sources in power systems increases stability concerns and demands accurate VSC impedance models to characterize grid-converter interactions at various operating points. However, analytical impedance models require detailed knowledge of the VSC parameters, which are frequently inaccessible due to manufacturer confidentiality. Further, existing neural network data-driven VSC impedance identification methods adopt conventional multi-layer perceptrons, yielding complex models and demanding abundant high-quality data. This paper presents a data-driven VSC impedance identification method using Dropout Kolmogorov-Arnold Networks (DropKANs) to address these challenges effectively. The hyperparameters of the proposed DropKAN model are optimized using Optuna, outperforming the Scikit-learn, Hyperopt, and GPyOpt optimizers, and the training is optimized using the Adam optimizer and compared with Nadam and RMSprop. Comprehensive and comparative evaluation tests showed 1) the superiority of the proposed DropKAN model over the feedforward neural network, long short-term memory, and KAN models in terms of accuracy, training and prediction times, and neural network structure simplicity, even with a 50% reduction in the training data size, and 2) the versatility and robustness of the proposed DropKAN model when applied to a different VSC system.
辍学Kolmogorov-Arnold网络:一种新的数据驱动的电压源变换器阻抗建模方法
电压源变流器(VSC)作为电力系统中可再生能源的接口的广泛集成增加了对稳定性的关注,并且需要精确的电压源变流器阻抗模型来表征电网-变流器在不同工作点的相互作用。然而,分析阻抗模型需要VSC参数的详细知识,由于制造商的机密性,这些通常是无法访问的。此外,现有的神经网络数据驱动的VSC阻抗识别方法采用传统的多层感知器,模型复杂,需要大量高质量的数据。本文提出了一种基于Dropout Kolmogorov-Arnold网络(DropKANs)的数据驱动VSC阻抗识别方法,以有效解决这些挑战。使用Optuna对DropKAN模型的超参数进行了优化,优于Scikit-learn、Hyperopt和GPyOpt优化器;使用Adam优化器对训练进行了优化,并与Nadam和RMSprop进行了比较。综合和比较评估测试表明:1)所提出的DropKAN模型在准确性、训练和预测时间以及神经网络结构简单性方面优于前馈神经网络、长短期记忆和KAN模型,即使训练数据大小减少了50%;2)所提出的DropKAN模型在不同的VSC系统中具有通用性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.60
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信