Prabagar Jijoe Samuel , Challaraj Emmanuel E S , Vinod Divya , Mohammad Khalid , Mohammed H. Alqarni , Harikaranahalli Puttaiah Shivaraju
{"title":"Multifunctional CaBi LDH/Ag-gC3N4 catalytic composite for sustainable pollution remediation and photochemical conversion into usable derivatives","authors":"Prabagar Jijoe Samuel , Challaraj Emmanuel E S , Vinod Divya , Mohammad Khalid , Mohammed H. Alqarni , Harikaranahalli Puttaiah Shivaraju","doi":"10.1016/j.cattod.2025.115315","DOIUrl":null,"url":null,"abstract":"<div><div>A simple methodology was devised for synthesizing the CaBi LDH/Ag-gC<sub>3</sub>N<sub>4</sub> composite using eggshell-derived calcium. Composite is a potent catalyst for converting atmospheric gases into value-added derivatives and photocatalytic remediation with antimicrobial potential. An innovative CaBi LDH/Ag-gC<sub>3</sub>N<sub>4</sub> was effectively fabricated using solvothermal and hydrothermal techniques and was subjected to sophisticated characterizations. Enhanced crystallinity with the intact framework of Ag-gC<sub>3</sub>N<sub>4</sub> into CaBi LDH, agglomerated cloud-like structure, easy electron mobility transfer with extensive charge separation and high photocatalysis have been confirmed by characterization studies. The CaBi LDH/Ag-gC<sub>3</sub>N<sub>4</sub> composite further demonstrated photocatalytic conversion of N<sub>2</sub> and CO<sub>2</sub> into NH<sub>3</sub> (up to 84.02 µmol/L at 45 min) and functional hydrocarbon derivatives (C<sub>2</sub>H<sub>6</sub>O ∼350 μmol/L and CH<sub>3</sub>OH ∼118.2 μmol/L at 4 hr) respectively under visible light. The composite demonstrated superior photocatalytic remediation of ciprofloxacin (CPF) under visible spectrum and antibacterial efficacy against two pathogens, <em>Escherichia coli and Staphylococcus aureus</em>, supported by well suggested mechanism. The photoreduction mechanism of CaBi LDH/Ag-gC<sub>3</sub>N<sub>4</sub> is discussed, and the CB position of g-C<sub>3</sub>N<sub>4</sub> (-1.16 eV) showed comparatively having lesser value (negative) than CB of CaBi LDH (-0.73 eV). An intricate mechanism has been devised in each photocatalytic reaction to elucidate the general reactions in line with the intended reactions.</div></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"455 ","pages":"Article 115315"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Today","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920586125001336","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A simple methodology was devised for synthesizing the CaBi LDH/Ag-gC3N4 composite using eggshell-derived calcium. Composite is a potent catalyst for converting atmospheric gases into value-added derivatives and photocatalytic remediation with antimicrobial potential. An innovative CaBi LDH/Ag-gC3N4 was effectively fabricated using solvothermal and hydrothermal techniques and was subjected to sophisticated characterizations. Enhanced crystallinity with the intact framework of Ag-gC3N4 into CaBi LDH, agglomerated cloud-like structure, easy electron mobility transfer with extensive charge separation and high photocatalysis have been confirmed by characterization studies. The CaBi LDH/Ag-gC3N4 composite further demonstrated photocatalytic conversion of N2 and CO2 into NH3 (up to 84.02 µmol/L at 45 min) and functional hydrocarbon derivatives (C2H6O ∼350 μmol/L and CH3OH ∼118.2 μmol/L at 4 hr) respectively under visible light. The composite demonstrated superior photocatalytic remediation of ciprofloxacin (CPF) under visible spectrum and antibacterial efficacy against two pathogens, Escherichia coli and Staphylococcus aureus, supported by well suggested mechanism. The photoreduction mechanism of CaBi LDH/Ag-gC3N4 is discussed, and the CB position of g-C3N4 (-1.16 eV) showed comparatively having lesser value (negative) than CB of CaBi LDH (-0.73 eV). An intricate mechanism has been devised in each photocatalytic reaction to elucidate the general reactions in line with the intended reactions.
期刊介绍:
Catalysis Today focuses on the rapid publication of original invited papers devoted to currently important topics in catalysis and related subjects. The journal only publishes special issues (Proposing a Catalysis Today Special Issue), each of which is supervised by Guest Editors who recruit individual papers and oversee the peer review process. Catalysis Today offers researchers in the field of catalysis in-depth overviews of topical issues.
Both fundamental and applied aspects of catalysis are covered. Subjects such as catalysis of immobilized organometallic and biocatalytic systems are welcome. Subjects related to catalysis such as experimental techniques, adsorption, process technology, synthesis, in situ characterization, computational, theoretical modeling, imaging and others are included if there is a clear relationship to catalysis.