{"title":"Numerical hydrodynamic characterization for the design of a lab-scale jet-loop reactor","authors":"Ronny Gueguen , Hervé Neau , William Benguigui , Anne-Marie Billet , Carine Julcour , Renaud Ansart","doi":"10.1016/j.cherd.2025.04.019","DOIUrl":null,"url":null,"abstract":"<div><div>The jet-loop reactor is a powerful tool for analyzing the kinetics of heterogeneous catalytic reactions due to its high mixing degree. Indeed, the high momentum gas flow injected within the loop induces a large gas recycling flow, minimizing concentration and temperature gradients. The purpose of this numerical study is to optimize the geometric features of the reactor (injection nozzle diameters and length, and outlet pipe diameter) to improve the gas recycle ratio. Its hydrodynamic behavior is predicted by using multi-fluid solver, with an immersed boundary method to model the injector and easily vary its geometry. The effects of the operating parameters such as the injection flowrate, the pressure and the temperature are also assessed. In addition, a residence time distribution analysis allows for the evaluation of the Péclet number as a function of the geometric and operating parameters of the reactor. Then, a zero-dimensional hydrodynamic model, based on a macroscopic momentum balance, is finally developed. After fitting specific terms thanks to separated numerical CFD simulations, it enables a rapid optimization of the reactor design and provides insights into its behavior.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"217 ","pages":"Pages 399-415"},"PeriodicalIF":3.9000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876225001911","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The jet-loop reactor is a powerful tool for analyzing the kinetics of heterogeneous catalytic reactions due to its high mixing degree. Indeed, the high momentum gas flow injected within the loop induces a large gas recycling flow, minimizing concentration and temperature gradients. The purpose of this numerical study is to optimize the geometric features of the reactor (injection nozzle diameters and length, and outlet pipe diameter) to improve the gas recycle ratio. Its hydrodynamic behavior is predicted by using multi-fluid solver, with an immersed boundary method to model the injector and easily vary its geometry. The effects of the operating parameters such as the injection flowrate, the pressure and the temperature are also assessed. In addition, a residence time distribution analysis allows for the evaluation of the Péclet number as a function of the geometric and operating parameters of the reactor. Then, a zero-dimensional hydrodynamic model, based on a macroscopic momentum balance, is finally developed. After fitting specific terms thanks to separated numerical CFD simulations, it enables a rapid optimization of the reactor design and provides insights into its behavior.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.