Carlos Tais , Juan M. Fontana , Leonardo Molisani , Ronald O'Brien , Yolanda Ballesteros , Raquel Caro Carretero , Juan C. del Real-Romero
{"title":"Flaw classification in bonded joints using multivariate statistical analysis and artificial intelligence","authors":"Carlos Tais , Juan M. Fontana , Leonardo Molisani , Ronald O'Brien , Yolanda Ballesteros , Raquel Caro Carretero , Juan C. del Real-Romero","doi":"10.1016/j.ijadhadh.2025.104032","DOIUrl":null,"url":null,"abstract":"<div><div>Adhesives play an important role in multiple industries, offering versatile bonding solutions for diverse applications. However, their incorporation in structures where safety is critical has been met with hesitation due to potential degradation risks. Addressing this concern, this study introduces the preliminary assessment of a pattern recognition method aimed at automatically identifying damage in adhesive joints through acoustic signal analysis. This method was tested on experimental samples consisting of aluminum substrates bonded with an acrylic adhesive. Artificially generated defects on the samples was related to the percentage of bonded surface. Damaged samples contained either 25 %, 50 %, or 75 % of bonded surface, whereas healthy samples contained 100 % of bonded surface. Experiments involved applying an impulsive load at one end of the sample and recording the acoustic signal emitted in response to the load using a microphone located at the opposite end. Two classification algorithms were evaluated for discriminating the amount of damage of the samples. First, a multivariate statistical analysis extracted the fundamental frequencies from the acoustic signals to create a model that achieved 95 % of classification accuracy. Second, an Artificial Neural Network (ANN) model was trained and validated with features extracted from the sound pressure level (SPL) signal obtaining an average accuracy of 97.1 % for a 9-fold cross-validation. The results indicate that there is potential for further exploration of the proposed approach, leading to the development of a robust system capable of automatically detecting damage in bonded joints. Future work will explore the performance of the classification techniques for detecting other types of defects related to the lack of adhesion and inadequate curing times.</div></div>","PeriodicalId":13732,"journal":{"name":"International Journal of Adhesion and Adhesives","volume":"140 ","pages":"Article 104032"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adhesion and Adhesives","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143749625000995","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Adhesives play an important role in multiple industries, offering versatile bonding solutions for diverse applications. However, their incorporation in structures where safety is critical has been met with hesitation due to potential degradation risks. Addressing this concern, this study introduces the preliminary assessment of a pattern recognition method aimed at automatically identifying damage in adhesive joints through acoustic signal analysis. This method was tested on experimental samples consisting of aluminum substrates bonded with an acrylic adhesive. Artificially generated defects on the samples was related to the percentage of bonded surface. Damaged samples contained either 25 %, 50 %, or 75 % of bonded surface, whereas healthy samples contained 100 % of bonded surface. Experiments involved applying an impulsive load at one end of the sample and recording the acoustic signal emitted in response to the load using a microphone located at the opposite end. Two classification algorithms were evaluated for discriminating the amount of damage of the samples. First, a multivariate statistical analysis extracted the fundamental frequencies from the acoustic signals to create a model that achieved 95 % of classification accuracy. Second, an Artificial Neural Network (ANN) model was trained and validated with features extracted from the sound pressure level (SPL) signal obtaining an average accuracy of 97.1 % for a 9-fold cross-validation. The results indicate that there is potential for further exploration of the proposed approach, leading to the development of a robust system capable of automatically detecting damage in bonded joints. Future work will explore the performance of the classification techniques for detecting other types of defects related to the lack of adhesion and inadequate curing times.
期刊介绍:
The International Journal of Adhesion and Adhesives draws together the many aspects of the science and technology of adhesive materials, from fundamental research and development work to industrial applications. Subject areas covered include: interfacial interactions, surface chemistry, methods of testing, accumulation of test data on physical and mechanical properties, environmental effects, new adhesive materials, sealants, design of bonded joints, and manufacturing technology.