Ali L. Abed , Mustafa K.A. Mohammed , Sadeer M. Majeed , Raid A. Ismail , Duha S. Ahmed , Mika Sillanpää
{"title":"Boosting the performance of triple-cation perovskite solar cells through 2-phenylethanethiol treatment and green anti-solvent","authors":"Ali L. Abed , Mustafa K.A. Mohammed , Sadeer M. Majeed , Raid A. Ismail , Duha S. Ahmed , Mika Sillanpää","doi":"10.1016/j.orgel.2025.107254","DOIUrl":null,"url":null,"abstract":"<div><div>Increasing the efficiency and improving the stability of perovskite solar cells (PSCs) represent major challenges for researchers and offer breakthroughs in renewable energy, driving significant progress toward sustainable energy solutions. The current study aims to increase power conversion efficiency (PCE) along with the stability of triple-cation PSCs. Herein, we employed green ethyl acetate (ETAC) anti-solvent to reduce the toxicity of the PSC production approach. Photovoltaic measurements showed a low PCE of 14.19 % for cells when we used the ETAC antisolvent. This was due to the development of a perovskite film with low crystallinity and small grains. We added 2-phenylethanethiol (2-PET) material to the ETAC anti-solvent to increase the PCE of ETAC-based PSCs. The findings showed that the 2-PET additive lowers defects in both the bulk and the surface of the perovskite layer. This improves charge transfer and inhibits charge recombination in ETAC-based PSCs. The 2-PET molecules interact with under-coordinated Pb<sup>2+</sup> ions and improve the photovoltaic properties of the perovskite layer. The modified ETAC-based PSCs recorded a champion efficiency of 18.46 % with improved operational and ambient air stability. After 45 days of performing an operational stability test, the modified ETAC-based PSCs demonstrated less than 5 % efficiency loss without any encapsulation and at a humidity level of 20 %.</div></div>","PeriodicalId":399,"journal":{"name":"Organic Electronics","volume":"143 ","pages":"Article 107254"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Electronics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566119925000606","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Increasing the efficiency and improving the stability of perovskite solar cells (PSCs) represent major challenges for researchers and offer breakthroughs in renewable energy, driving significant progress toward sustainable energy solutions. The current study aims to increase power conversion efficiency (PCE) along with the stability of triple-cation PSCs. Herein, we employed green ethyl acetate (ETAC) anti-solvent to reduce the toxicity of the PSC production approach. Photovoltaic measurements showed a low PCE of 14.19 % for cells when we used the ETAC antisolvent. This was due to the development of a perovskite film with low crystallinity and small grains. We added 2-phenylethanethiol (2-PET) material to the ETAC anti-solvent to increase the PCE of ETAC-based PSCs. The findings showed that the 2-PET additive lowers defects in both the bulk and the surface of the perovskite layer. This improves charge transfer and inhibits charge recombination in ETAC-based PSCs. The 2-PET molecules interact with under-coordinated Pb2+ ions and improve the photovoltaic properties of the perovskite layer. The modified ETAC-based PSCs recorded a champion efficiency of 18.46 % with improved operational and ambient air stability. After 45 days of performing an operational stability test, the modified ETAC-based PSCs demonstrated less than 5 % efficiency loss without any encapsulation and at a humidity level of 20 %.
期刊介绍:
Organic Electronics is a journal whose primary interdisciplinary focus is on materials and phenomena related to organic devices such as light emitting diodes, thin film transistors, photovoltaic cells, sensors, memories, etc.
Papers suitable for publication in this journal cover such topics as photoconductive and electronic properties of organic materials, thin film structures and characterization in the context of organic devices, charge and exciton transport, organic electronic and optoelectronic devices.