G. Sannino , F. Tomei , M. Bittelli , C. Meisina , M. Bordoni , R. Valentino
{"title":"A three-dimensional agro-hydrological model for predictive analysis of shallow landslides: CRITERIA-3D","authors":"G. Sannino , F. Tomei , M. Bittelli , C. Meisina , M. Bordoni , R. Valentino","doi":"10.1016/j.enggeo.2025.108073","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper a three-dimensional agro-hydrological model for shallow landslides' prediction is presented. The model is an extension of the CRITERIA-3D free-source model for crop development and soil hydrology, developed by the Hydrometeorological service of the Regional Agency for Environmental prevention and Energy of Emilia-Romagna region (Arpae-simc). The soil-water balance is computed through the coupling of surface and subsurface flows in multi-layered soils over areas topographically characterized by Digital Elevation Model (DEM). The rainfall infiltration process is simulated through a three-dimensional version of Richards' equation. Surface runoff, lateral drainage, capillarity rise, soil evaporation and plant transpiration contribute to the computation of the soil hydrology on an hourly basis. The model accepts meteorological hourly records as input data and outputs can be obtained for any time step at any selected depth of the soil profile. Among the outputs, volumetric water content, soil-water potential and the factor of safety of the slope can be selected. The validation of the proposed model has been carried out considering a test slope in Montuè (northern Italy), where a shallow landslide occurred in 2014 a few meters away from a meteorological and soil moisture measurement station. The paper shows the accuracy of the model in predicting the landslide occurrence in response to rainfall both in time and space. Although there are some model limitations, at the slope scale the model results are highly accurate with respect to field data even when the spatial resolution of the Digital Elevation Model is reduced.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"352 ","pages":"Article 108073"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225001693","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper a three-dimensional agro-hydrological model for shallow landslides' prediction is presented. The model is an extension of the CRITERIA-3D free-source model for crop development and soil hydrology, developed by the Hydrometeorological service of the Regional Agency for Environmental prevention and Energy of Emilia-Romagna region (Arpae-simc). The soil-water balance is computed through the coupling of surface and subsurface flows in multi-layered soils over areas topographically characterized by Digital Elevation Model (DEM). The rainfall infiltration process is simulated through a three-dimensional version of Richards' equation. Surface runoff, lateral drainage, capillarity rise, soil evaporation and plant transpiration contribute to the computation of the soil hydrology on an hourly basis. The model accepts meteorological hourly records as input data and outputs can be obtained for any time step at any selected depth of the soil profile. Among the outputs, volumetric water content, soil-water potential and the factor of safety of the slope can be selected. The validation of the proposed model has been carried out considering a test slope in Montuè (northern Italy), where a shallow landslide occurred in 2014 a few meters away from a meteorological and soil moisture measurement station. The paper shows the accuracy of the model in predicting the landslide occurrence in response to rainfall both in time and space. Although there are some model limitations, at the slope scale the model results are highly accurate with respect to field data even when the spatial resolution of the Digital Elevation Model is reduced.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.