{"title":"Large sample properties of modified maximum likelihood estimator of the location parameter using moving extremes ranked set sampling","authors":"Han Wang, Wangxue Chen","doi":"10.1016/j.spl.2025.110430","DOIUrl":null,"url":null,"abstract":"<div><div>The maximum likelihood estimator (MLE) obtained using moving extremes ranked set sampling (MERSS) typically does not have a closed form expression. In this study, we investigate a modified MLE (MMLE) utilizing MERSS for estimating the location parameter of a location family and analyze its properties in large samples. We derive the explicit form of the MMLE for two common distributions when MERSS is employed. The numerical results from two usual distributions indicate that the MMLE using MERSS is more efficient than that the MLE using simple random sampling with an equivalent sample size. The numerical results also indicate the loss of efficiency in using the MMLE under MERSS instead of the MLE under MERSS is very small for small values of <span><math><mi>m</mi></math></span>. Additionally, we examine the implications of imperfect ranking and demonstrate our approach using a real dataset.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"223 ","pages":"Article 110430"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225000756","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
The maximum likelihood estimator (MLE) obtained using moving extremes ranked set sampling (MERSS) typically does not have a closed form expression. In this study, we investigate a modified MLE (MMLE) utilizing MERSS for estimating the location parameter of a location family and analyze its properties in large samples. We derive the explicit form of the MMLE for two common distributions when MERSS is employed. The numerical results from two usual distributions indicate that the MMLE using MERSS is more efficient than that the MLE using simple random sampling with an equivalent sample size. The numerical results also indicate the loss of efficiency in using the MMLE under MERSS instead of the MLE under MERSS is very small for small values of . Additionally, we examine the implications of imperfect ranking and demonstrate our approach using a real dataset.
期刊介绍:
Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature.
Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission.
The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability.
The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.