{"title":"Design and implementation of an adjustable Micro PDLC Driver for smart buildings","authors":"Kun-Che Ho, Rui-Feng Xu, Cheng-Xun Wu, Jia-Zheng Liao","doi":"10.1016/j.ohx.2025.e00648","DOIUrl":null,"url":null,"abstract":"<div><div>Polymer Dispersed Liquid Crystal (PDLC) glass, with its controllable light transmittance enabling shading and energy savings, is widely used in green and smart buildings as a key technology for smart windows and privacy glass. However, traditional PDLC drivers are bulky, consume high energy, and offer limited functionality, restricting their application in multi-panel glass control and space-constrained scenarios. This study proposes a low-power, adjustable mini driver that utilizes Pulse Width Modulation (PWM) signals and a full-bridge inverter architecture to generate AC square waves. By integrating simple analog and digital circuit designs, digital resistors, and specialized adjustable power modules, remote voltage and frequency modulation control is achieved, enabling efficient and flexible PDLC driver development. Compared to traditional transformer designs, the developed driver not only offers the advantages of miniaturization and high efficiency but also can flexibly adapt to diverse application scenarios such as office privacy glass, smart buildings, and multi-zone linkage control. This research provides an effective solution for the widespread application of PDLC technology and the advancement of smart buildings. Finally, the functionality of the proposed design is verified through hardware circuit implementation and experimental validation.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"22 ","pages":"Article e00648"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067225000264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer Dispersed Liquid Crystal (PDLC) glass, with its controllable light transmittance enabling shading and energy savings, is widely used in green and smart buildings as a key technology for smart windows and privacy glass. However, traditional PDLC drivers are bulky, consume high energy, and offer limited functionality, restricting their application in multi-panel glass control and space-constrained scenarios. This study proposes a low-power, adjustable mini driver that utilizes Pulse Width Modulation (PWM) signals and a full-bridge inverter architecture to generate AC square waves. By integrating simple analog and digital circuit designs, digital resistors, and specialized adjustable power modules, remote voltage and frequency modulation control is achieved, enabling efficient and flexible PDLC driver development. Compared to traditional transformer designs, the developed driver not only offers the advantages of miniaturization and high efficiency but also can flexibly adapt to diverse application scenarios such as office privacy glass, smart buildings, and multi-zone linkage control. This research provides an effective solution for the widespread application of PDLC technology and the advancement of smart buildings. Finally, the functionality of the proposed design is verified through hardware circuit implementation and experimental validation.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.